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ABSTRACT

This report examines optimum array processing for bit detection
of a binary communication signal in the presence of a directional
interfering signal. The binary communication signal is assumed to
be either completely known or to have random parameters (Rayleigh
amplitude and uniform phase). The interfering signal is a wide-
sense stationary Gaussian process. The receiving antenna is a linear
array of equally spaced isotropic point elements. Statistically
independent white noise is added to the signal at each element.

An analytical expression for the inverse of the covariance
matrix is obtained, and the general structure for the optimum
detector is derived. The optimum processor is a correlation
receiver whose detailed structure is dependent in general on the power

spectrum of the interference, as well as the other antenna and signal
parameters.

The detection error is calculated for several cases. It is
found that the detection error is minimized if the array elements
have an optimum spacing, determined by the array size and the in-
cidence angles of the desired signal and the interference. When
the optimum spacing is used, the structure of the detection system
is not dependent on the power spectrum of the interfering signal.
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i’ CHAPTER I
INTRODUCTION

&3 Statistical decision theory has been applied for some time
to the problem of determining the optimum structure of a receiver.
'll The basic concept of optimal detection for completely known signals
or known signal with unknown parameters corrupted by additive
Gaussian noise has been discussed extensively in [1-5]. During
the past decade this theory has been extended to analyze a com-
munication system which includes an antenna array. The philosophy
is to seek an optimum performance of the entire system based on
statistical decision theory, rather than to consider the performance
. of the array or the receiver separately.

it Tt i AL N

Basically, a decision theory receiver processes the received
- signals and makes one of several possible decisions, based on an

o optimum decision rule. Peterson et al [6] showed that the re-
ceiver which forms the 1ikelihood ratio from the received signal
C3 and compares it with a threshold is an optimal receiver regardless

of which criterion is used (e.g., Bayes, minimax, Neyman-Pearson,
etc.). The various criteria affect the receiver only in the value
of the threshold setting. A paper by Stocklin [71 formally showed
o that optimal space-time signal processing also called for 1ikelihood
o ratio detection. Bryn (8] applied Rice's Fourier series repre-
sentation to a vector representation of the signals to obtain a
likelihood ratic detection good for wide~sense stationary processes.
The problem of spacing a finite number of point detectors in a plane
to detect spatially isotropic signals corrupted by spatially iso-
tropic and covariance-separable noise was studied extensively by
Gaerder [9]. Capon [10], Young [11-13], Gallop [[14] have also treated
various problems in this area.
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The goal of this research is to find and examine the behavior
of an optimum detector for detecting binary signals received by a
linear array of equally spaced isotropic point elements. The novelty
of the problem treated here is that the signal is assumed to be
corrupted by an external directional interfering signal, The
interfering signal is modeled as a wide-sense stationary process.
In addition, the processing unit behind each antenna is assumed to
hE contribute white noise, statistically independent from one element
i to the next.
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i The research discussed here is motivated by the adaptive ik

e antenna array research currently being conducted at the ElectroScience b
Laboratory[24-26]., The purpose of this research is to determine J

s the performance of the optimum detection system so that this
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performance may be taken as a base for evaluating the performance
of the adaptive antenna array.

A similar problem has been treated by Urkowitz [15]. However,
his approach requires the solution of a matrix integral equation,
and his results, which are carried out only in general temms, do
not include a detailed examination of specific cases.

Two different series representations of a vector random
process are discussed in Van Trees [3]. These two methods both
require the solution to a matrix integral equation, which is tedious
and difficult. The method used here is the scalar Karhunen-Loeve
representation. The advantage of this choice is that only one
integral equation needs to be solved. The material will be pre-
sented in the following manner,

Chapter II is devoted to formulating a workable expression for the
covariance matrix and its inverse. First, the inverse of the
covariance matrix associated with broadside interference is obtained
by generalizing the results for a two-element array, a three-
element array, etc. Then an expression for the inverse valid for
an arbitrary arrival angle is obtained by employing a trans-
formation. This transformation relates the original observation
sgace1to a modified space associated with delayed versions of the
signals.

In Chapter III, the structure of the optimum processor for
detecting completely known binary signals is found from the 1ikelihood
ratio test. Also, the equations for the receiver operating character-
jstics are given. To make the results more specific, some numerical
results for the case when the desired communication signals are
biphase modulated are given in Chapter IV. The discussion con-
centrates on the directional characteristics of the optimum detector
and its error rate performance.

The optimum system for detecting the signal which has a random
amplitude and phase is investigated in Chapter V. We assume that the
amplitude is a Rayleigh random variable and the phase is uniformly
distributed between -r and n. Some numerical results for the case
when the desired signals are on-off keying signals are discussed in
detail in the last section of this Chapter,

In Chapter VI, we briefly discuss the general optimum system for
detecting binary signals with phase and amplitude distributed arbi-
trarily. Also, we prove that the processing outputs are free from

interference when an optimum-spaced array is used in the detection
system,
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CHAPTER II
THE COVARIANCE MATRIX AND ITS INVERSE

A. Introduction

The mathematical model of a general array detection system
is shown in Fig. 2-1. The antenna array which is linear, and
consists of m equally spaced isotropic point elements, is designed
to receive the signal x'(t) from a remote station. The signal
x'(t) may be either one of two waveforms,

a'(t) under hypothesis H
x*'(t) = a
b'(t) under hypothesis Hb

and the task of the receiver is to decide which waveform was sent.
The signal transmitted by the source is corrupted by an additive
directional interference n'(t). The output at each antenna terminal
will be the sum of the desired communication signal and the inter-
fering random noise component. Those two components are temporal
and spatial functions.

Suppose the incident angles for the desired and interfering
signals measured from the array axis are ¢ and ¢, respectively.
Then the signals received by two adjacent antennas will be out of
phase due to differences in the arrival times. The time delays
Tt and v, given by

(2-1) T

d
c ° Cos 8

(2-2) v %—cos o »

are the arrival time differences between adjacent elements for the
desired signal and the interference, respectively. d is the spacing
between antennas, and ¢ is the speed of light.

Often, the received signal is amplified to a certain level
before being processed. We assume that the gain and phase shift for
each of the m ideal, linear amplifiers are identical. For simplicity,
but without losing generality, the phase shift of each amplifier is
assumed to be zero. Let xi(t) and nj{t) be the outputs of the ith
amplifier when the inputs are x%(t) and n;(t), respectively. Since
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the amplifiers are ideal and do not introduce phase shift, we have

x;(t)
(2-3) !
"i(t)

x[t-(i-1)1]
nft-(i-1)vl, 1 <i=<m,

The interfering signal n(t) is assumed to be a wide-sense
stationary Gaussian process of zero-mean,* i.e.,

(2-4) E{n(t)} = E{ni(t)} =0

(2-5) E{n(t) - n(z)} A R(t-z) = R(z-t)

where R(t-z) is the autocorrelation function of the sigral n(t).
The functions wi(t), 1 <1 <m, in Fig., 2-1 represent internal
noises, generated by the amplifiers and other electronic components
(e.g., mixers) in each processing unit (not shown in the figure).
We further assume that the interference and the internal noises

are statistically independent, and wi(t) is a Gaussian white noise
process with zero-mean and spectral height hy for all i. Since

the noise sources in each channel are statistically independent,

we have

(2-6) E{wi(t) . wj(z)} = Gij . hw . 8(t-2)

where 8jj is the Kronecker delta and §(+) is the Dirac delta
function.

The goal of this research is to find an optimum processor for
detecting the signal x(t) in the presence of interference. We
treat here the binary detection problem. That is, the signal to
be processed in the ith channel, rj(t), is of one of two forms,
as follows: ’

(2-7) hypothesis H,: ri(t) = ai(t) + ni(t) + wi(t)

(2-8) hypothesis H: ri(t) = bi(t) + ni(t) + wi(t)

*£{.} is the expectation operator,




B. The Covariance Matrix

There are many ways of characterizing waveforms and random
processes. The method adopted here uses an orthogonal series
Karhunen-Loeve representation ((17]. That is, we express the wave-

_form as a series expansion on the orthonormal basis function
{¢2(t)} given by the eigenfunctions of the integral equation [18]

T
(2-9) % ¢2(t) = J . c(t,u) - ¢2(u) cdu, 1<pc<w

where the bounds specify the observation interval, from t = -T to
t=T, and the kernel of the integral equation is given by,

(2-10) c(t,u)

E{Cn;(t) + wy(t)I0n; (u) + w,(u) T

R(t-u) + hw « 8(t-u), 1 <ic<m ,

We have made use of Eqs. (2-5) and (2-6), and the assumption that
nij(t) and wi(t) are uncorrelated, to get Eq. (2-10). The integral
equation may then be written

T
(2-11)  (ah) « 4,(t) = j_T R(t-u) +o,(u) - du

For a Gaussian random process, the coefficients in the expansion are
statistically independent Gaussian random variables [19]. It is in
this case that the expansion becomes attractive.

We approximate the signal ri(t) for the ith channel by an i-term
expansion

ne~122
—t

(2-12)  ri(t) = F vy, 4,(t)

b

(aiz tng, + "iz) . ¢2(t), T<iz<m

N
bosd
ne~—1=2
—

under hypothesis Ha’ or

N .
(2-13) ri(t) = g'z] (bu gt wu) . %(t), T<iz<m
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under hypothesis Hb, where

¥ Tig ry(t)
e a;(t)

T
T (2-14) biz AJ-T bi(t) . 4,2(1:) . dt

n. ni(t)

B 12

We define the observation vector R for the detection system as

e

) X

: .
(2-15) R4 | R

. :

: )

where Rj, associated with the ith channel, is itself a column
u vector, i.e.,

Ty ]

Ti2

e

(2-16) R, 2

ﬂ L ]

o ;

Z L7in ] |
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(2-17)

M= E{RIHk} = E

this case here,

The dimension for the Gaussian random vector R is mN. We define*

Ry [H, M,
Ry IHy Al M,
Ry Iy M

under hypothesis Ha

.....................

A
B under hypothesis Hb

and the covariance matrix

(2-18) Kk = E {(R-M) (R-M)T} & Q"

If K is nonsingular,** the probability density function of R for
an m-channel, N-term expansion is [20]

1
(19 p(RI) = g

where |K| is the determinant of K

REAGLKICY

* Ne use Hk to represent either hypothesis.

**If K is singular, we have a singular detection problem. K becomes
singular 1f the spectral het

ght "w is zero. We will not examine
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The following several pages will be devoted to finding a workable
expression for the covariance matrix. Symbolically, we may write

T T
(Ry=My ) (Ry-M) T (R, ) (Ry-M,)T -

where
™| B
Mi ri2
(2-21) M. AE{ }
m;l ri;lHk
_“‘;N 1 J‘ir;l“k_L

It is apparent that my ajy under hypothesis Hy a
under hypothesis Hp. éor

(Ry=My )R -M )T
K= E{ (RZ-MZ)(R'I-M'I)T (RZ-MZ)(RZ-MZ)T cos (RZ-MZ)(&“-Mm)T}

Ry (R M)T (M) (Ryep)T e (R (R o)

dm
an m-element array, the mE submatrices

may be classified into two types: the one associated with the ith

channel, namely, the autocovariance submatrix

(2-22) Ky 8 E ((Ry = Mo)(Ry-M{)T)

and the crossvariance submatrix

- T
(2-23) K"j A E{(R'I-M‘l)(Rj-Mj) } ’ i f Ja

......................
__________________________
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which is associated with the ith and jth channels, respectively. E'-?
These submatrices may also be expressed in terms of the elements

of Ry in Eq. (2-15), as follows, -
o
(2-24) =
Crggmyp) (ryp=myq) Crypemyq) (rypomyp) oo ("11'"‘11)‘er'"'3~;! g
. King{F(riZ'miz)(rj'l'mjl) (rypmmip) (rypemyp) oo ("iz"“iz)('”ju"“ju)} 1
: : : ;
P J,("iN'"'iN)(rjl'mjl) Crinmin) (rygmjp) == ("'iN'miN)("jN'ij_)J E
-. We proceed to examine the elements of Kj j under both hypotheses. %
‘ Since rjp and rj, are statistically independent Gaussian random g

E! variables, and processes ni(t) and wi(t) are uncorrelated, we have
- under H, *

= Ellryryp)itgd - 25,25,

T
= JJ-T [t-u-l-(j-'i)v] . ¢2 (t)d,n(U) « dudt + sij SZno hw

.
“Eifan Mt Opeh - [ e (0 e e - e

The elements of K1 j for i#j hence become }

T w
(2-26)  ECrqp-myp)legp-my ){H = (0 =h)) J Fe(B) e tr{3-i)gdt '+

and the elements of K_H become

10

|

...........................
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(2-27) E{(riz'miz)(rin'min)‘Ha}

:
Oghy) * [ 0y(8) g0t + 5,0
0 ife#n

]

An if L =n

The elements of Kijj and Kjj under hypothesis Hp may be derived
in the same manner. It is foung that they are identical to those
under hypothesis Ha. Consequently, the covariance matrices under
the hypotheses defined in Eqs. (2-7) and (2-8) are equal, and the
hypothesis detection must rely on the difference in the mean M
associated with each hypothesis. The autocovariance submatrix

and the cross covariance submatrix have the following forms:

N 00 0]

0 Az 0 LA 0

(2-28) Kii = 0 0 A3 oo 0
0 6 o s XN_

(2-29)

143

The element of Kij at the en position,is equal to that of K.,
at the n2 position, because J

1
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.
(2300 (yh) [ 4,08 « gLt (31031 - at

T T
- J-T #u) - J_T RCEH(I-1)v-u] « ¢,(t) . dt du

T
=, -h) J_Tq,n(u) + 4 lut(i=3)v] « du.

Hence, Kij=Ki1 and consequently the covariance matrix K is symmetric.
ii

In terms of and Kij’ the covariance matrix K may be written
Ky K e Ky

(2-31) K= 1Ky Kpp ooo Ky
Mmoo K2 " Km

Since -

(23) Qak' =T

the Q matrix is also symmetric.

C. Broadside Interference

To compute the Q matrix, one has to go through a tedious process.
First, the integral equation defined by Eq. (2-11) has to be solved.
Afterwards, one has to compute many integrals in order to get Kij'
Finally, one must invert the covariance matrix K.

Referring to Eq. (2-29), we see that a much simpler expression
for K is obtained if the external interference arrives from the
broadside direction of the array, i.e., if v = 0. When this is the
case, the orthogonality property of {¢,(t)} ensures that all off-
diagonal elements of Kigé i#J, vanish., Furthermore, all cross-
covariance submatrices become equal, as follows:
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(2-33) Kij(v=0) = . . [ _.'

| i e
[ ]
.
3

iy 8
—
o
o
.
.
.
>
=
[}
=~
3
L
w2 L
[ Wy ) [ u

*
AKij

e ey

Let K* be the covariance matrix for this special case._ Then the L
expression for each element of Q*, defined by Q* = K*-1, can be o
obtained by generalizing the results for the inverses of the
covariance matrices associated with a two-element array, a three-
element array, etc., It is found that all submatrices Q*. are
identical and diagonal. The nonvanishing elements

;

(932’ QUN+2) (N+2)® D(2N+2) 2N+g)? etc)
may be written as+

Ag *+ (m-2) (2 =h,)

(2-34)  af(y) 3
~TIN#2TC(i=-1)N+2] 2 2
A2+(m-2)k£ . (Al-hw) - (m-])(xl-hw)
A, + (m=2) « (2 =h) l1<iz<m ;
= L L w » 1 E 2 _<_ N _'
The submatrices Q¥;, i#j, are equal and diagonal as well, The "
diagonal elements ﬂay be expressed as Rk
: ~(x, - h) R
E (2-35) gk, — N 9 B
+ E(i-1)Med0(3-1 0423 - (e h ] B
J Combining Eqs. (2-34) and (2-35), we have ]
(2-36) q - = Wl -2 LJ 1<i,j<m :'::3
E(i ])N+1][(j-] )N'”J hwl:m)‘z - (m-l)hw] * - - Uod
b 7
A g
i A simple ?roof of Eq. (2-36) is shown in Appendix A. Notice that
y Qf; # K*z! for a1l i and j.
i3 i
E
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Although Eq. (2-36) is only good for v = 0, the result of this special
case can be generalized.

D. Interference from Arbitrary Angles

Although the digital computer may be used to obtain the Q matrix
numerically if the order of K is not too large, we hope to obtain a
general analytical result. Thus we shall have to find another method
for computing the Q matrix.

The simplicity for the case of broadside interference is due to
the interfering signal having equal phase at each element. Suppose
we consider the following delayed signal

(2-37)  r3(t) & {a;(2) + ny(2) + wy(2)hpoy_(ni)y

= aft-(m=-i)=(i=1)7] + n[t-(m=-1)v] + wi[t-(m-i)v]

where Eq. (2-3) has been used to replace aj(z) and nj(z). The second
term in Eq. (2-37) does not have the index i, becuase the interference
has the same phase for all ri(t)'s. We examine the covariance matrix
associated with r;(t). Let

T
(2-38) vy, 2 J_T F(E) ¢, () - dt

Then the element of the ijth submatrix at the en position is

(2-40) E{(r?z'm?z)('fn'mgn)}

T
JI r E{n[t=-(m-1)v] * nfu-(m=-1)v]} -¢2(t)¢n(u) + dt du

+

T
IJ . E{w1[t-(m-1)vj . j[u-(m~j)v]} . ¢z(t)¢n(“) « dt du

T
San{An=hy) + hyesyy Jj_Tstt-u+(i-J)vJ * ¢,(t)o,(u) - dudt

Sen * (An - hw) if id)

Son * M if i=j
14
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Equation (2-40) indicates that the covariance matrix of ri(t) is
' identical to that for broadside interference. This is also true if
. a;(t) in Eq. (2-37) is replaced by bi(t), which is the signal under
[ (] hypothesis H .
%*

Physically, rs(t) is the signal obtained by delaying the signal
ri(t) in the ith cﬁannel by t-(m-i)v seconds. In general, such time
shifting of the received signal could be done with a delay line

behind each array element, Since the wj(t) are assumed to be wide-
Il sense stationary processes, shifting on the time axis will not
affect their statistics. We next examine how the r¥* 's are related

to the riz's. We know that "

N ‘
(2-41) r:(t) =tim § r. ¢, (t), T<t<T

It is also true that

N
(2-42) ri[t-(m-i)ﬂ = lim Z] r12-¢£[t-(m-i)v], ~T < t=(m-i)v < T
Now =

and
- N
. - * = (M- = i %*
- (2-43) ri(t) arlt (m=i)v] LEE QZ] r12¢2(t)
i Equating Eqs. (2-42) and (2-43), we have ;
] (2-48) T rfy e(t) = T vy ¢,L-(nei)]

If both sides of Eq. (2-44) are multiplied by ¢p(t) and integrated
between the 1imits =T and T, the result yields

3 - T .
; (245) vy = Lory J_T 0o(t) ~4,[t-(m-1)v] + dt

.( e
oy et

We define the vector R*
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(2-46) R* A |.

¥ RY
9 where R? ijs itself a column matrix given by

-
™ 1
ri2

*
"IN

We also define a matrix C

Fc1 0 0  eee 0]

(2-48) ca |0 0 € e O

)t

0 0 0 oo C -]




where 0 is a null matrix and the submatrix Ci is a square, un-
symmetric matrix, defined by

(2-49)

-

T T T
{J_T oy ()9 Ct-(m-1)v]dt J_T 0 (t) < o Lr=(m-i)vIdt ... J-r ()-8 [t=-(m-1)v1dt

T : T ) T .
¢ = J_T oz(t) . o][t-(m-i)v]dt J_T oz(t) . ozft-(m-x)v]dt vor J-T cz(t)-eN[t-(m-i)v,dt

T T T
oy (t) » 9 [t-(m-i)vIdt t) o e,[t-(m-i)vIdt - (t)-oLt-(m-i)vIdt
J-r oy(t) * &y[t-(m-i)v J-ToN( )+ epLt-(m-i) I_T on(t)-oplt-(m

- E

In matrix notation, Eq. (2-45) may be expressed as

(2-50) Tim R* = 1im CR
N->eo N

We have pointed out earlier that if we compute E{(R*-M*)(R*-M*)T},
where M* A E{R*|H}, we get the same covariance matrix as if the
interferring source were at broadside. In other words,

(2-51)  K* = E{(R*-M*)(R*-M*)T}

Substituting Eq. (2-50) into Eq. (2-51), yields,

(2-52)  K* = CKCT

From Eq. (2-52), it can be shown that

(2-53) Q= C' Q*C

Eq. (2-53) provides us with a much easier way to compute the Q
matrix. Since Eq. (2-42) is defined for -T <t - (m-i)v < T and
the series given by Eqs. (2-41) and (2-43) converge to ri(t) and
rf(t) respectively if N approaches infinity, Eq. (2-53) is correct
and exact if those two conditions hold. For a finite N, Eq. (2-53)
is merely an approximation.
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Now we use this transformation to find the elements of Q for
an arbitrary ¢. Performing the matrix mu1t1p’l1cat10ns indicated
¥ Eq. (2-53), we find that the submatrix Q5 3 which is one of

of its kind, is given by

i~ A TINDERC

(2-54) Q = C Q’;J CJ i<i, js<m

. If the last _term for the series expansion is denoted as N, then
- there are N2 elements in the square matrix Qjj. We use g, with
proper subscripts, to denote elements of Q. llrom Eq. (2-54), we
find the element of Qij at the 2n position is equal to

(2-55) ]
AC(4-1)N+230(5-1)N+n] © ‘1mJJ_T¢gEt-(m-i)v] » ¢ Lu=(m-3)vI-

N
) kzl (-1 IC(G-1)N+k] * Pk () (u)-dtdu

Substituting Eq. (2-36) into Eq. (2-55), yields
(2-56)

8s: (T
SL(1-1)NTC(3-1)0en] = T, f_T dpLt-(m-i)v ] g Lt-(m-3 VT - dt

o -h T
1 MM . ]
“The k§1 mA - (m-TJh J J-T ¢ [t-(m-i)v] « ¢ Cu-(m-j)v]-

w

* 9 (t) ¢ (u) - dt du
We have made use of

(2-57)  o(t-u) = ,51 3,() ¢, (u)

to get Eq. (2-56). This result will be used to formulate the
analytical expression for the test statistics in the next chapter.
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CHAPTER II1I
THE OPTIMUM DETECTOR FOR DETECTING COMPLETELY
KNOWN BINARY SIGNALS

A. The Likelihood Ratio Test

In this chapter, the equations of the test statistic and those
required for showing the receiver operating characteristic of the
optimum processor are formulated. The results presented here
optimize the performance of the entire detection system, rather
than the antenna array or the receiver separately.

The binary signals a(t) and b(t) are assumed known exactly.
Thus the uncertainty in the signal at the input of each channel
arises solely from the additive random noise which is the sum of
the interference and the internal noises. The detection system
will have to make a choice between two hypotheses by processing
the signal from each channel. The signal to be processed at the
ith channel can have one of two different signals:

Hypothesis H,: ri(t) ai(t) + ni(t) + wi(t)

Hypothesis Hy: ri(t) bi(t) + ni(t) + wi(t)

where 1 € i € m,

Dual hypotheses testing relies on a decision rule for dividing
the observation space into two parts. Various optimum decision rules
(e.g., Bayes criterion, Neyman-Pearson criterion, etc.) can be used.
These decision criteria for the optimal receiver all lead to a like-
1ihood ratio test [21]:

(3-1) L.R.T. A 1i PIRIHy) b threshold
- elfalse A 'll'ﬂ > ?'ES 0
T Noto p(R ”a’ <
Ha

where N is the last term of the Karhunen-Loéve expansion. The
structure of t!'e optimum detector immediately follows once the
result for the likelihocd ratio test is obtained.

The probability density function of R under hypothesis H

for a N-term Karhunen-Loeve expansion and an m-element array s
equal to
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- % (R-A) 'Q(R-A
(3-2) P(RIH,) = ] . 7 (R-A)'Q(R-A)

(2r)™ k|

The exponent may be written as

(3-3) -5 (R-A)T . Q- (R-A)

S
S - 2- i ZZ] JJ_T[ri (t)-ai (t)][rj(z)_aj(z)j
. E. £=1 87 (-1)Ne 0 (5=1)Nn] ¢ () ¢q(2) « dE dz.

We may express Eq. (3-3) in a more compact form by defining

N
N

3-4 W (e,

(3-4) i3(t:2) él§§=l (-1 (-1)Nen] 42t ¢,(2)

Since the Q matrix is symmetric, it can be shown that Hij(t,z) =
Hji(z,t) and thus

m T N
SO jI_T ry(t)ay(2) + ag(t) r5(2)7 - Wj(t,2) « dt dz

2™ ([ N
=2 1] jj_T ry(thaglz) - H)j(t.2) - dt a2

Hence, in terms of H¥j(t,z), the exponent becomes
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(3-6) -7 (R-A) - Q -+ (R-A)
I T N
=-3 i%jgl JJ_T ri(t)r;(z) - Hj;(t,2)-dtdz

T
i %. §m § JJ T a;(t) aj(z) . H?j(t,z) . dt dz

m
+ I
i,

s

T
N
321 JJ_T ri(t) a;(z) - Hy;(t,2) - dt dz

The probability density of R under Hp is readily obtained by
changing a(t) in Eq. (3-6) to b(t). We compute the 1ikelihood
ratio

RIH
(3-7)  L.R. = Tim PIRIH)
Now p(RIH,)

. L N
= ;12 exp g,jzl JJ—T ri(t) -[bj(z)-aj(z)]- Hij(t,z)-dt dz

1 M T \
"2 g.jgl JJ T [bf(t)bj(z)'ai(t)aj(z)]' Hij(t,Z)-dtdz

rij(t), the input of the ith channel, appears only in the first term
of Eq. (3-7). Since a(t) and b(t) are assumed known exactly, the
second term thus is a constant and may be incorporated in the
threshold. Let

(3-8) s(t) = b(t) - a(t)

Then, from Eq. (3-7), an equivalent likelihood ratio test (ELRT) is

m T
(3-9) ELRT & ;,jzl JJ-T ri(t)sj(z) . Hij(t,z) « dt dz
ty
< threshold
Ha
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where we have taken the 1imit as N»é:

(3-10)

= 1im uN
= 1im Hij(t,z)

2,n=1

AT T

Ay = h

T
1 W ' -4 .
Ry M- {m= JJ—TGEt-t Hi]

§[z-u'+(m=j)v] ¢k(t') ¢k(u') s dt' du'

Substituting Eq. (3-10) into Eq. (3-9), yields

ELRT =L 9 JT (t,)s.(t,)dt
= r S
Ay gdy ) TS

i,3=1
where

(3-11) t, 4 t-(m-i)v

(3-12) 2 AZ - (mj)v
and

® t
(313)  w(t2) ] ¢,(t)e, (2)
o=

.
-1l IJ_Tri(ti)sj(zj) - ¥(t,2) - dt dz

X Z AC(3-1)N+2I0(5-1)N+n] %(t) *n (2)

T
j Lt ()v] - alz-ti(mmg)v] -+ de

Let n be the threshold. The optimum detection system is defined by
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m T :
(3-14) L(R) A 'igl J-Tr‘i(ti)si(ti),dt
|
m T
) 1‘ng1 J-Tri(ti)sj(zj) . ¥(t,z) - dt dz
' "y
Ha

The likelihood ratio test leads us to the test statistic

L(R), which can be generated by correlating the delayed signal

] rij(tj) with some known functions. We compare L(R) to a threshold !
to make the decision.

In Eq. (3-14), the known signal s(t) and the array received
signal ri?t) are time-shifted, because

(3-15) si(ti) si[t-(m-i)v] ;

b{t-(i-1)c=(m=1)v] - a[t-(i-1)r=(m-1)v]

- and

(3-16)  r.(t.)

Y‘_i [t- (l’ﬂ-'i ) \)]

- The delay time (i-1)t occurs because each array element has unequal

! distance to the signal source. But the additional delay (m-i)y
results from computing the Q matrix using the transformation C.

o The double summation term in the test statistic L(R) is influenced

N by the power spectrum of the interference, for y(t,z) is obtained

from the integral equation defined by Eq. (2-11). The double 3

- summation term may be rewritten as .
m T m " s*

@ 5[ oy I | ) e[ ot .;

i=1 /-1 I I T :

xg-ﬁw :

5 where :

T
(3-18) 532 AJ Sj(zj)"’g,(z) . dz

23




Hence, ri(t ; is, in generaI. correlated with m distorted known
signals s because sj 's are weighted unequally. For the case
when the nterference is'& white noise process with autocorrelation
function R(t-u) = hy - 6(t-u), it is found by solving Eq. (2-11)
that Ag-hy = hy for all 2. Thus the weights for the s¥,'s are
1dent1cal and the test statistic takes a much simpler Yorm:

3-19
(ua; 7 jT (t,)s, (t;)dt —F,— zz jT (t,)s.(t;)dt
| = T‘ S - r. .)S. .
i=1 /-1 1 i W odiygsrder UV I
n

A scheme for processing the input of the ith channel based

on Eq. (3-14) is shown in Fig. 3-1.
3 .
5 THE i'™ ANTENNA
< MULTIPLIER
3 ri(t) ri(t) T
o [ ar [TouTPuT
u_;‘ -T
& i0eaL  OELAY
LL‘ AMPLIFIER
%
3 [ dz
b:..'.-. -T
2 V(t,2)
-
. Fig. 3-1--The ith channel processing unit.
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B. Receiver Operating Characteristic

Since the test statistic L(R) is obtained by the linear
operation indicated by Eq. (3-14) on rj(t;), it is a Gaussian
random variable under either hypothesis. The density of L(R) is
found once its mean and variance are determined.

The mean of L(R) is readily obtained if we replace ri(t.) in
Eq. (3-~14) by its expectation, i.e., ' 1

(3-20)

m o A EL(R) [H )

n T m T
i 12} J;T a3 (t)sy(t;)at - ?'EIJJ-T ai(ti)sj(zj)°v(t,z)-dt dz

LN
and
(3-21)
my, A E{L(R) [Hy}
m T m T
-1 ]_T b (t;)s, (t;)dt - L jj;r by (t)s5(z;)-¥(t,2)-dt 2

The variance of L(R) under either hypothesis may be calculated from
the following relation

(3-22)  var(L(R) [H,) = E(L2(R) [H} - EZ(L(R) [H, )

Evaluating the variance is straightforward but tedious. The derivation
is given in Appendix B. We find that the variance of L(R) equals
(3-23)

2
of A var{L(R)[H}

_ m T 2 m T ]
=h, iZ] f_T Eilis 1§jz] JJ_T si(ti)sj(zj)'w(t.z)'dt dz'f
25
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By expressing si(ti) as,
s'l(t‘l) = bi(ti) - a'l(ti)’

jt can be shown that the variance 02 may be written in terms of
the distance between the means of tl"ne test statistic under
either hypotheses as

(3-24) af =h, (m,-m,)

Since °E is nonnegative, one concludes that

(3-25) My ZMa

We next formulate the equations for the probabilities of false
and correct detection. Let the probability of choosing Hp when Hy
is present be denoted by Pg and that of choosing Hp when Hp is
present by Pp. Then, as iglustrated in Fig. 3-2, the probability
of false detection is*

e oo
e - i & B amh -4 o8 w4 .

(3-26)  Pp = [ pLIR)IH,) + dL(R)

n 2 ]
_(emp,) 2
—t—
] = 2o N Ma

= J e dL = erfc*( -
3 JZ_n oL 1 L
.
%;: and the probability of correct detection is
3
E:
:
] 2
~ 00 - "'1
r +erfc,,,(x) is defined as J - exz dy 2
;:. X J.Z-TT
b-. g
g .
& 26 ,{
i-‘ ‘4
e
v J
L - -
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(321) Py = [ pLRIIM) - d L)

n
2
_ (Lm, )

o 2 2
] °L "M b
= e dL = erfc, =
, 2n oL 1 L

The Pp-Pp plot is referred to as the receiver operating characteristic

(rRoC).

- 1 I

Mia n Lb L(R)

Fig. 3-2--Probability density functions of L(R).

For a communication system, we are usually interested in the
total probability of making incorrect decisions. If the a priori

probabilities of the source are equal, i.e., if Pp[Ha] = P.[Hy] =

then, Pe, the total probability of making error is simply
(3-28) P€ =% P+ (1-PD)

For a given my,, m*ﬁ and o, the probability of error varies with
the threshold n. e thresho]d " which minimizes Eq. (3-28) may
be determined by solving

dp
(3-29) a-f\- =0

for n. The solutjon is

(3-30) o = L (me + mLa)

27

PRIPU PR S

I T PP S N T

PR SV e W)

|
1
-4
:
;1
:
;
:

=

B o e




1

\ 1
ﬁ; The corresponding probability of error, P (n ), is found to be equal

K to

b

"™b"La =
(3-3]) Pe(“o) = erfc,(—zT—)
which implies that P¢(ny) may be minimized by maximizin
me-mL /oL. Alternatively, by substituting Eq. (3-24 into -
Eq. (3-%1). we obtain another expression for P 4

m, .M ,
(3-32) P (n) = erfc*(lg l-—Lﬁw—L—a) ;
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CHAPTER IV
THE DIRECTIONAL CHARACTERISTICS
AND THE ERROR RATE PERFORMANCE

A. Introduction

To make the general theory developed in the last chapter clearer,
we shall treat the case when the binary signals are of the form.

(4-1) Hy: a(t) = ea(t) « cos(ut +¢ S)
(4-2) Hy: b(t) = eb(t) « cos(ut +¢ S)

The signals given above represent the amplitude-shift keying (ASK)
binary signals if the modulating signals ey(t) and ep(t) only
differ in amplitudes. If the modulating signals are related by
eal(t) = - ep(t), then the signals given in Eq. (4-1) and Eq. (4-2)
are biphase modulated binary signals.

The optimum communication system contains an array and an optimum
signal processor. The task for the system is to detect the binary
signals arriving from angle ¢ in the presence of an interfering
signal from the given angle ¢. To accomplish this goal, we in-
tuitively expect the system to function in favor of the signal
arriving from the desired angle ¢. To investigate this aspect, we
study how the system treats a testing signal arriving from an arbitrary
angle 6. Since the detection system is based on a comparison of the
processor output L(R) with a threshold, we examine L(R) to determine
the system characteristics. One important characteristic of L(R) is
its mean., Hence, we study the mean instead. The performance of a
detector is judged mainly by its ability to make correct decisions.
For this reason, we shall also discuss the error rate performance and
the methods of optimizing it.

Here, we shall assume that the waveform for the testing signal
is the same as the signal a(t). The reasons for this choice are
(1) to simplify the mathematics involved, and (2) to understand the
behavior of the mean m| 5 through studying the directional character-
istics of the optimum system. The output from the optimum detector
(e,4) when a signal a(t) arrives from angle § is given by*

*

We use "detector (6,4)" to mean a detector designed to detect
the desired communication signal arriving from angle o in the
presence of the interfering signal with incident angle .
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CORRCEI jT F(t)s (8, )dt

m T .
- i?jza JJ—T 'i(ti)sj(zj) . ¥(t,z) - dt dz,

where F(t,) is defined as
Felty) Ang(ty) + wilty) + ag(t;)
A-"i(ti) + wi(ti) + aft - (i-1) %-cos 8 =(m=17)v]
The mean of the system output L(R) is

(4-8)  m_(6,438) & E(L(R)}

) JT a;Ct-(m-1)v1 + s,[t-(m-i)v] - dt
= a.Lt-\m-1 e S.lLt-(M=1)v]
i=1 Jor S

1y []T 3.[t-(mei)v] - s,z-(m-5)v]
i,5=1 St J

. ¥(t,z) . dt dz

We write m, as a function of the angles to emphasize its dependence
on these angles. The ™ a appearing in the last chapter is just
m a(850350).

The closed form representation for my ,(0,4;8) will be derived in
the next section. In Sections IV.C and IV.E, the directional char-
acteristics and the error rate performance are investigated. The
discussions are restricted to the case when the interfering signal
is a white noise process and the desired signals are biphase modu-
lated. Section IV.F generalizes these results to the case when the
interference is a general Gaussian, wide-sense stationary process
with arbitrary power spectrum,
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B. The Mean of L(ﬁ)

We assume that the frequencies contained in the modulating signals
ea(t) and ep(t) are much lower than the carrier frequency so the
following approximation may be made*

(4-5) epilt-(m-ipl 3 e (t), k=aandb.

Hence, ai[t-(m-i)v] may be approximated by
(4-6) ai[t-(m-i)v] N ea(t) o cos{w[t=-(m-1)v] + ¢s-('i-])w(r-v)}.
In the same manner,

(4-7) s;[t-(m-i)v] % e(t) - cos{wlt-(m-1)v] + ¢g(i-Tuw(r=v) 1},

where e(t) 2o eb(t) - ea(t).

By making use of the identities

sin(%‘- x) . cos(mél x)

m
1‘21 cos(i-1)x = sin(-’z‘-) j ,

and

Ii] sin(i-1)x sin(g- x)? » sin (mé-]- x)
i=1 sin(z-) .

it can be shown from Eq. (4-6) and Eq. (4-7) that

*This approximation introduces a maximum time shift of d/c (m-1)
seconds in the modulation envelope. We assume this time shift
to be negligible at the maximum modulation frequency.
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(4-8) .§] s;Ct-(m=1)v]
1=

sin g- w{t=v) m-1
= oin % (T-\,) . E(t) o cos{u[t - — (T+V)]+ ¢s{

CONM RSN
1=

sin -'g- w(;-v) me1 ,~
= o % (;-v) . ea(t)-cos{w[t - (t+v)] + ¢S}

and

(4-10) Si[t-(m-i V] - s,[t-(n-1)v]

ne13

i=1
e(t)e,(t) sin § u(i-1) - cos Bl w(z-r)

2 L 4

sin -‘é’- (‘I‘-‘r)

e(tle,(t)  sin g w(T=1-2v)
, .

sin %-(;+r-2v)

cos{2u(t - mil”)+2¢s - mil (1-1)}

Substituting Eqs. (4-8), (4-9) and (4-10) into (4-4), we obtain
(4-11)

sin 3 olte-2y) JT e, (t)e(t)
-T

mLa(egd’;a) = 7,

sin % (T+1-2v)

. cos[2u(t - Eél v) + 2¢s - mil w(;""r):l « dt
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(4-11)
(Cont.)

+

sin g-w(;-T) . COS E%l w(1-1) . JT e (t) e(t)
-T

= -—-1r—————— dt
sin % (1-1)

sin g- w(;-\)) sin g- w(t=v) w 1

i sin -‘é’- (1-v) ) sin -‘é’- (1-v) ) Z'l g )

;
: ”T e, (t)e(z)-¢,(t)o,(2) costult - B (F+v)1 + o 1

« cos{w[z - Eil (t+v)] + ¢S} « dt dz .

If wis large, the first term in Eq. (4-11) is comparatively small
and may be neglected for computation.

When the interference is a Gaussian white noise process with
spectral height hn’ Eq. (4-11) reduces to a very simple form,

(4-12)

. T e(t)e,(t)
mLa(e,¢;e) x J _’Z_' dt - cos T w(T=1) -

sin g-w(;-r) 1 sin g-w(r-v) sin g-w(Q-v)
sin -‘é’- (;-T) m + %ﬂ_ sin -02"- (t=v) sin %)- (;-v)

where numerically small terms in Eq. (4-11) have been neglected.

C. The Directional Characteristics

The detection system is assumed to operate with two signal
sources, the desired communication signal and the interference.
The incident angles for these signals, are 6 and ¢, respectively.
Hence, the behavior of mia(6,¢; eg at 6=0 and 6 6=¢ interest us most.
For this reason, we next study mLa(e ¢36) and mya(6,630). In this
sect1on, the interfering signal is assumed to be a Gaussian white
noise process of spectral height h

The test function L(R) is obtained by processing the sum of the

desired signal, the interference and the internal noise in the manner
given in Eq. (3-14). The quantity mLa(e,¢;0) is the mean of the
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processor output L(R) under hypothesis Ha. Since the interference and
the internal noise have been assumed to be zero-mean, m z(6,¢36) in
fact is equal to the component contributed to L(R) by the signal a(t)
from the desired squrce for which the processor is designed to be
optimum. Letting 6=6 (i.e., t=t) in Eq. (4-12), we obtain

(4-13) m _(0,430) =ym - ———dt
La Ny sin® %-(T-v)
P

n

] S'in2 % w(T=v) JT ea(t)e(t)
m+ -T

For the same reason, m a(6,43¢) is equal to the component contributed
to L(R) by the signal a?t) arriving from the angle identical to that

of the interference. Letting 6=¢ (i.e., t=v) in Eq. (4-12), we find

that

(4-14)
sin g— w( V) m

m _(6,¢3¢) = cos m-] (1=v) » . Jd1 -
La : 7wy <in f’ () —T'w

m+m

T e_(t)e(t)
. Lt
=T )
It can be shown that mLa(e.¢;e) never changes sign for a given

.
J_T e, (te(t) - dt

as the angles of arrival or the number of elements are varied. More
precisely, the sign of mLa(e.¢;e) is always the same as the sign of

T
J . ea(t)e(t) dt.

It can be shown from Eq. (4-14) that m ,(6,¢3¢) vanishes if*

*Equation (4-15) is derived from setting sin L w(t=v)=0. A is
the free-space wavelength associated with thg.carrier. The
quantity m, ,(8,436) also vanishes if cos E%l,w(t-v) = 0,
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(4-15) m g-lcos 0 - cos ¢|

where 8#¢ and k = 1,2,3 «««, Furthermore, the absolute values of
mL a{6,43;6) and m_ 3(6,43¢) are bounded as functions of the incident
angles 6 and ¢. We find that

(4-16)
T ea(t)e(t) m
J-T—T—-— dt e m-{1 - ——-h-‘; < lmLa(e,¢;e)|
m+
=
n
T ea(t)e(t)
h J-T — dt - m
and
(8-17)
T ea(t)e(t) n
0 < |m (0,050 < J Zy—dt e m |1 - —T
) -T m o+ W
By

Since the upper bound for Im*a(e,¢;¢)l is just the lower bound for
[m a(6,030) |, the former will never become greater than the latter.
They are equal only when 6=¢.

The bounds given in Eq. (4-16) and Eq. (4-17) indicate that the
processor produces unequal outputs for the signal a(t) when this
signal arrives from different angles. More precisely, the processor
functions in favor of the signal a(t) when it arrives from the
desired angle 6 and suppresses it if the incident angle is ¢.

For a fixed m and d, the ability of each processor to suppress
the signal a(t) arriving from the angle ¢ depends on the angular
separation between the incident angles ¢ and ¢. To show this, two
typical plots of mLa(9’¢3¢) vs o for ¢=450 are shown in Fig. 4-1 and
Fig. 4-2. The spacing for which each detection system is designed
to be optimum is 0.5x. Also, we let ez(t)=-ep(t) so that the binary
signals are biphase modulated. Furthermore, we assume that

.
(4-18) %JT eg(t)dt =1

In the neighborhood of 45°, it is observed that lmLa(e,45°;e)|
increases rapidly and eventually reaches the maximum at 450,
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These two figures indicate that the detection system is capable of
suppressing the signal a(t) very effectively if the separation of ¢
and ¢ is large. As the incident angles 6 and o get very close,

the suppression becomes very poor.

We now consider the case when the signal a(t) propagates into the
array from the desired angle 6. The ability of the processor to favor
this signal is also dependent on the angular separation. In Fig. 4-3
and Fig. 4-4, we plot m_3(e6,436) vs 6, given ¢=450, The antenna
spacing used by each system is again equal to 0.5)». In Fig. 4-3,
where m=4, we observe that |m 5(6,450;0)| begins to decrease steadily
at 0=00 and 6=700, 1In Fig. 4-4, where m=12, the absolute value of
each processor output decreases sharply in the neighborhood of =45
which is the incident angle for the interfering signal.

0

For a constant m and d, the difference between the delay times <
and v decreases as the incident angles 6 and ¢ get closer and closer.
When the separation between 6 and ¢ is large enough, the change of
the difference between 1 and v causes the sine and cosine functions in
Eq. (4-10) and Eq. (4-15) to fluctuate periodically. When 6 and ¢ get
closer and closer, the distinction between the signals from 6 and ¢
diminishes gradually. Consequently, the processor becomes less
capable of favoring one type of signal and suppressing another type
and vice versa. Finally, the two signals get equal treatment when
8=¢,

The upper bound of |m_a(6,45%;0)] for m=12 should be three times
higher than m=4. This property is reflected in Fig. 4-3 and Fig. 4-4,
One of the differences between mia(6,¢36) and m_a(6503¢) is shown
in those figures, i.e., the former does not change sign whereas
the latter does change sign as 6 is varied.

We pointed out earlier that mys(6,¢3¢) vanishes if 0,4 and n
satisfy Eq. (4-15). It can be shown from Eq. (4-13) that Eq. (4-15)
is also the condition for |m a(e,¢;6)| to reach its upper bound.
From the discussion given earlier, it appears that an antenna array
with spacing d satisfying this condition, for a given 6,4 and m,
would optimize the error rate performance of the system. We shall
discuss Eq. (4-15) more later. The upper bound of |mL (65¢50) |
increases linearly with m. The function a

(4-19) f(m,hwh;]) =m (12
W
1+ -Fn-

which appears in the upper bound for |m 3{6.¢3¢)], is plotted in
Fig. 4-5 for three values of hw/hn° It is seen that increasing m
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does not_increase f(m,hwh;]) drastically. We also observe that
f(m,hwhﬁ]) tends to approach hwhil as m gets large. In fact, by
expanding Eq. (4-19) into a power series, we find that

(8-20)  Vim f(m,h h>}) = w
<o wn 'y

Equation (4-20) suggests that the upper bound for |m a(6,43¢)| can
not be raised appreciably by increasing m, Hence, we can widen the
difference between mLa(e,¢;e) and mLa(e,¢;¢) by using a large array.

200 L
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m

-1
Fig. 4-5--f(m,hwhn ) vs. m.

The difference in the magnitudes of ImLa(e,¢;e)| and |mLa(e,¢;¢)|
can be best indicated by the ratio

m 2 (8:050)

20 log lmLa 57530 4 D.F.
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which we may call the discrimination figure (D.F.) because it

shows the extent that the processor favors one signal and suppresses
another signal. The D.F., for the detector using a 4-element array
with spacing d = 0.5)x is shown in Fig, 4-6. The incident angle for
the interfering signal is 450, As can be seen, the D.F. is usually
quite high if the separation between 6 and ¢ is large, but decreases
sharply as o get closer to ¢. Ultimately, this figure goes to zero
at e=¢, because m 5(6,436) and m a(6,¢36) become equal when e=¢,

For a constant m, the D.F. changes with the antenna spacing d.
Figure 4-7 shows a comparison of the D.F. for d = 0.5A» and for

d = 0.75x given m=2, A plot of this figure, given 6=60°0 and ¢=450,
of a 4-element array detector vs hy/hy is shown in Fig. 4-8. The
quantities |mpa(6,¢30)|and |mya(6,656)| increase with hy|hy, at
different rates. Since the denominator in the expression of D.F.
increases faster with hy|h, than the numerator, the D.F. declines as
hylhn increases. This indicates that the more internal noise, the
poorer is the figure.

To broaden the study of the directional characteristics of the
detection system, we also examine the behavior of mia(6,¢;6) at an
arbitrary angle 6, In order to compare easily the treatment of the
signal_a(t) from 6 with that of the same signal from the desired
angle 6, we study the normalized ratio defined as follows:

m a(0s438)

F(e,¢;e) = 20-]09 W

For a given 6 and ¢, the F(6,$;8) vs. 6 plot shows relative angular
res?on§e of the system to the testing signal a(t) from an arbitrary
angle 8.

Several typical curves of F(40°,436) vs. 6 of a 4-element

array processor are shown in Figs. 4-9 through 4-12, The spacing

d for the array is 0.51 and hy/hp is set equal to 0.2. The incident
angle ¢ for the, interference in Fig. 4-9 js 850, The figure shows
that F(400,800;6) reaches its maximum at 6=¢ and becomes a relative
minimum at 6=¢. But F(6,¢;6) dges not always behave in this manner,
In Fig. 4-10, where ¢=450, the 6 which equals the incident angle for
the desired signal does not correspond to the maximum, nor does that
for the interference correspond to a relative minimum. Before giving

an explanation for this, we show the respense curves for systems using

larger antenna arrays in Fig. 4-11 and Fig. 4-12. The spacing for
each system is 0.5A. In Fig. 4-11, where m=8, the discrimination
figure increases to the neighborhood of 20 dB. In Fig. 4-12, where

m=12, F(400, 450; ) reaches the peak value near 6=6 and begomes a
:elat{vesginimum at 6=¢ even though the separation between o and ¢
s only 59,

40

I L VO P S PSR AP AP 2PN DS ST Y U E SSRR CURP . o e e Pon B Ao S ?

ey

P {

o




-70
h\U
hn- 0.2
-60—
-50—
-401—
~30
hy
20— T: = |
- 10—
N I I I R
(o] 20 40 60 80 100 120 140 160 180

8 (DEGREES)

Fig. 4-6--Discrimination figure given m=4, d= % and ¢ = 45°,

For a given 6 and ¢, the conditions for F(e.¢,e) to be minimum
can be found from Eq. (4-12), The absolute minimum of F(e,436) is ==
dB which occurs if

cos mil w(t=t) = 0

or

sin B w(;—'r) sin o w(t=v) sin D w(T=v)
Z _ 1 Z . 7 =0
sin %-(?-r) m +Aﬁﬁ sin %-(r-v) sin %-(;-v)
P

Obviously, these two conditions are not automat1ca11y satisfied when
6=¢. The relative angular response at 6=¢ is the maximum for the
given incident angles if

Im ,(85038)] < [m ,(6,030)]
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Fig. 4-7--Discrimination figure given m=2, +=45° and hnh; 0.2.

for all 8's. From Eq. (4-12) we find that the condition given above 3

is satisfied if

;

(4-21)  sin Fu(r-v) = 0 -
-
bf where t#v(i.e.,6#¢). It is interesting to point out that this 5
X condition a]so makes the response curve become the absolute minimum '
. (-~ dB) at e=¢. .
. -4
- Since m*a(e,g;e) is equal to the component contributed to L(R) ~
- by the signal a(t) from the desired source, large |m_;(6,430)| will
- reduce the influence of the interference on making decisions, The
- fact that each curve jn Fig. 4-10 through Fig. 4-12 fails to assume
.- the maximum value at 6=6 indicates that the condition given in
P! Eq. (21) is not satisfied for each corresponding detector. -
B
}5 The optimum system is assumed to operate with one desired source "
L and one interfering source. The incident angle for the desired
- signal is 6. The angular response curves shown in Fig. 4-9 through .
Ei Fig. 4-12 suggest that it might be possible for a certain detector i
x 42 1
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Fig. 4-8--Discrimination f1gure vs hy/hp given m=4, d= 73
8=600 and ¢=459,

to be optimum for two desired angles. This is indeed true if the
second desired source also transmits the binary signals of the same
waveforms. This will be shown by an example given in Section IV.F.

D. The Probability of Error

The discussion so far concerns the nature of how the optimum
detection system treats the signal a(t) from different incident
angles. With this background we next examine the system performance.
For a digital communication system, the performance of the system is
judged mainly by its ab111ty to make correct decisions. For this
reason, the technique of minimizing P.(ny) defined in Eq. (3-32) is
1nvest1gated As will become clear, m1n1m1zat10n will involve choosing
the total number of antennas and the spacing d used by the antenna
array. In this section, we assume that the interfering signal is a
white noise process with spectral height h.. The desired binary
signals are assumed biphase modulated in the sense that ea(t)=-ep(t).
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Hence, the difference of the means of the processor output L(R)
under hypotheses Hb and Ha is equal to

sin? M u(r-v)| (T Ce(t)-e (t)F
m "m = m- ] . 2. L4 b a dt
Lb™La By S Y (vv) T 2
m+hl Z\TY
n
where
m('r-\a)=21r-cl
A {cos 6 - cos ¢)

A convenient figure for showing how badly the interference
and noise are for this problem is the ratio*

T T
J a2(t)dt J ) b2(t)dt
S/N) A — = -
(5/m) 2 My + hy byt hy

which in fact is a signal energy to the noise power density ratio.
By making use of the assumption given in Eq. (4-19), we may write
that

(4-22) h = —] .
S/N) - (1 + L
(S/N) },;)

This equation enables us to specify hy in terms of the spectral
height ratio h /h. and the quantity (S/N).

We now consider the detection system which usea a 4-element
array and is designed for =550 and ¢=45°, The array spacing d
is 0.5\, Table 4-1 shows Pp, Pp and P, vs the ratio n/op (n is
the threshold setting). This system is assumed to operate under
the conditions that ?S/N) = 1,78 (2.5 dB) and h, is five times higher
than hy. The spectral height for the internal white noise is assumed
equal to 0.0093. From Table 4-1 we see that the probabilgty of making
incorrect decisions assumes its lowest value 0.6846€ x 10~ atn =0
which agrees with Eq. (3-30) because m_a is equal to -mp here. To

*The notation (S/N) does not imply the ratio is the signal-to-
noise ratio.

46

PAPRAPIAPY .

el

sy

—

o

=0

(D

e B 8



P T g Do A e

reduce the detection error Pe(”o)’ it is clear from Eq. (3-31) that
we should increase

LTSS [] 1 sin2 g- w(t=v)
(4-23) =2\ |m - T T,
L W m + Hﬂ sin 2-(T-v)
n

The value for (me'mLa)°E1 may be increased by adjusting the spacing
d or by var¥ing m as indicated by the 2quation itself. A plot of

(m -mLa)os vs m is shown in Fig. 4-13 for three different values of
hw>ﬁn. The angles & and ¢ are assumed 55° and 450, respectively.

In plotting this figure, we als? Tet (S/N) = 1.78 and d = 0.5,

When hy/hp = 0.2, (mp - m )°E at m=6 is about 10.6, which is
higher than the value at m=3. Hence, we expect that the detection
error Pc(no) when m=6 would be_lower than 0.6846 x 10-3, In fact,
P_(n,) for m=6 is 0.4640 x 10-7,

TABLE 4-1
PF’ PD and Pr(e) VS, n/oL.
/o P Pp Pe
-5,00 .96388233E 0 . 10000000E 1 4819E 0
-4,00 .78745639E 0 . 10000000E 1 «.3937E O
-3.00 .41981232E 0 . 10000000E 1 2099E O
-2,00 .11460924E 0 . 10000000E 1 .5740E -1
-1.00 . 13818979E =1 . 99998689E 0 .0916E -2
0.00 .68460932E -3 .99931550E 0 .6046E -3
1.00 « 13207964 -4 .98618102E 0 .6916E -2
2.00 .98379510E -7 .88539076E 0 .5730E -1
3.00 .27808902E -9 .58018768E 0 L2099 O
4,00 .29586578E =12 .21254361E 0 .3937E O
5.00 .11784304E -15 .36117673E -1 L4987E O

The internal noise degrades the error rate performance. To
show this, curves of P.(n g vs hy/hp for the detectors (550, 450)
with m=4 and 6 respectively are shown in Fig. 4-14. As can be seen
from Eq. (4-22), the spectral height h, increases with the ratio
hw/hn_if the quantity (S/N) is constant. In plotting Fig. 4-14 we
have let (S/N) = 1.78 which is about 2.5 dB. In Fig. 4-15, we show
the curves of P.(ng) vs (S/N) for the detector (550,450) using a
4-element array. The antenna spacing is again equal to 0.5x., It
can be seen from these curves that the internal noise degrades the
error rate performance drastically.
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We have shown that it is necessary to increase (me-mLa)o[]
in order to reduce P.(min). For the example given above, we
accomplished this by increasing the total number of antennas., But
increasing m is not the only way. As a matter of fact, the best
approach to this problem is to choose the proper spacing for the
elements of the antenna array.

E. The Optimum Spacing

It has been pointed out earlier that for the case when the
interference is a Gaussian white noise process |m ,| becomes equal
to its upper bound if 6,4 , m and d are related by Eq. (4-75).
Solving Eq. (4-15) for d, one finds the solution is many-valued
because k can be any integer. We define the optimum spacing dgp
as the solution when k=1 is chosen, i.e.,

A
(4-24) dop é-m]cos 5-cos 3|’ cos 6 - cos ¢ # O.

Since Eq. (4-15) is not valid if e=¢, there does not exist an optimum
spacing when 6=¢,

Equation {3-32) indicates that the error Pc(ng) decreases as
(mp=my 5) - hg increases, regardless of the power spectrum of the
interfering signal or the waveforms for the desired signals. When
the interference is a white noise process, we conclude from Eq. (4-23)
that the smallest value for P.(ng) is obtained if d is equal to the
optimum spacing. The reason is that the quantity (me-mL )°E has the
peak value at this particular spacing. a

Referring to Eq. (3-14), we see that the amount of time-shifting
on s(t) and the amount of time-delaying on r(t) depend on the incident
angles and the antenna spacing. When the spacing is changed, we must
adjust each delay line to provide the correct delay.

Referring to Eq. (4-23), we find that (me-mLa)oE] may be
rewritten as

5
m . -m sinza-d—n)
Lb "La 1 1 op
i el Ll ey v
L W m+ A sin (a——- ;n)
\ ﬁ; op

where the ratio d/dop may be called the normalized spacing. In
order to compare the error rate performance for systems optimized
for different spacings, several curves of Pe(no) vs. d/dgy, are
shown in Fig. 4-16. In plotting these curves, we let (S?ﬁ) =1.78
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and hy/hy = 0.2. In Fig, 4-16, each curve reaches the minimum at

d/dgp = 1 as we have expected, The error P.(ng) at d/dgp = 1 for

m= 3 is almost one thousand times lower than the value at 0.5.

This clearly points out that the spacing d plays a very important

role in the error rate performance. We shall use P.(min) to denote
the error rate for the system which is designed for an optimum spacing.

To show the lowest detection error available to a given array
size, the curves of Pc(min) vs. (S/N) for m=2 through 5 given
h“/hn = 0.2, 0.5 and 1.0 are shown in Fig. 4-17 through Fig. 4-19.
These curves are valid for arbitrary incident angles 6 and ¢ as long
as the spacing used by each system is equal to the optimum spacing
for the given o and ¢. The reason for this is given in the next
section,

F. Arbitrary Power Spectrum

The optimum spacing dop defingd by Eq. (4-24) is found by
examining the behavior of m 3(6,436) under the assumption that the
interfering signal is a white noise process. In this section, we
shall show that this particular spacing also optimizes the error
rate performance even though the interfering signal is characterized
by a different power spectrum. The signal waveforms considered in
this section are assumed to have the general expressions as given
in Eq. (4-1) and Eq. (4-2).

For an arbitrary power spectrum, the difference between the means
of the test function L(R) under hypotheses Hp and Hy may be derived
from Eq. (3-14). The result may be written as
(4-25)

My = Mo A EL(R)[H} - E(L(R)[H,}

m T 9 m T
iZ] J—T s‘i(ti)dt i} iEjE]JJ-T Si(ti)sj(zj).‘{'(t,z).dt dz

T 2

"
W ~13
ol

T 5 ® 1 m
[ siepar - 1 L[ 1 siteema
- = w =

"R,

i T i

Since the eigenvalues (Ag-h,) are always positive and s(t) and ¢4(t)
are real functions, we may write that

m T ,
(4-26)  mp-m, < ] J_T 5(ty)dt

i=1
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The closed form expression for
m
2
i=21 *i{ty)
is readily obtained when we replace t and ea(t) in Eq. (4-10) by <

and e(t), respectively. Hence,

(4-27)
iE; JTT s?(ti)dt =m e ITT Ezéﬁl dt
) [ S0 wdale- 5L
+ 2¢S - (m-1 )urt} dt

The second term of Eq. (4-27) is much smaller than the first term.
Thus the upper bound of (me'mLa) is approximately equal to

T

| e -t

-T

When the array is spaced according to Eq. (4-24), we find that
(4-28) sin -IB- w(t=v) = sin mw(t=v) = 0
As a result, we conclude from Eq. (4-8) that

m

izl Si(ti) =0

Consequently, the left side of Eq. (4-26) is equal to the right side.
Also, the second term of Eq. (4-27) vanishes because sin mw(t-v) = O.
Hence, we obtain

T
(4-29) Mp-M,a = ;- J-T ez(t) dt
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which is very close to the highest value of (me'mLa) we can get,
Substituting Eq. (4-29) into Eq. (3-32), we obtain che detection
error

T 2
(4-30) P _(min) = erfc, (%\Ihm_ J : g_éi;_)_ dt)

W

This is the lowest error rate available for a given array size.

Equation (4-30) does not contain the incident angles 6 and o¢.
This implies that this error rate does not depend on the angular
separation between the interfering source and the desired signal
source. The optimum spacing is a function of 6, ¢ and m. To
obtain this lowest error rate, we need to change the antenna spacing
and adjust the delay lines when the incident angles 6 and ¢ vary.

We also notice that Eq. (4-30) does not contain the parameter
which characterizes the interfering signal. This points out that
this lowest possible error rate is independent of the power spectrum
of the interfering signal. The reason is that at this particular
antenna spacing the interfering signal is completely cancelled by the
optimum processor. A formal proof of this statement will be given
in Chapter VI,

In plotting the curves in Fig. 4-17 through Fig. 4-19, we have
used the optimum spacing for the antenna elements. Hence, these
curves are also valid for other types of power spectrums if the
desired signals are biphase modulated in the sense that ea(t)=-eb(t).

If we let the signal a(t) = 0, then Eq. (4-1) and Eq. (4-2)
represent an on-off keying binary signals. The structure for the

optimum processor becomes simpler as can oe seen by the test
statistics

L(R) A } JT ri(t)by(t)dt - ZIE HT r(t)bo(zs) -
T i,3=1 -1 J

° ‘l’(t.Z) o dt dZ,

which is obtained by replacing s(t) in Eq. (3-14) by b(t). Ac-
cordingly, the threshold that minimizes the detection error is

_1
"o T ZMb
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The Towest error rate for a given array size may be derived from

2
T t
(4-32) Pe(min) = erfc, (%jh—m J . Teb( ) dt)
w -

Hence, for this on-off binary signals detector, the error rate
performance can be made as good as the biphase-binary detector by
increasing the amplitude of the signal b(t).

It was pointed out in Section IVC that some detectors may be
optimum for two desired sources if they transmit the same type of
binary signals. We now consider ? detection system which is
designed to be optimum for 6=cos~! (0.457), ¢=450, m=4 and d/r» = 1.
We find that the conditions given in Eq. (4-28) are satisfied by
the data given above. Hence we obtain

)
(8-33)  my-m, =2 | i e?(t)dt

When the same binary signals propagate into the array for the same
detection systems from angle 6=cos-1 (0.957), we find that Eq. (4-28)
is again satisfied. Hence, the difference of the means is identical
to Eq. (4-33). Apparently, the same system provides the same error
rate performance to two incident angles.
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CHAPTER V
THE DETECTOR FOR BINARY SIGNALS HAVING
A RANDOM PHASE AND AMPLITUDE

A. The Optimum Processor

This chapter considers the case where the desired signal is no
longer assumed to be known exactly, but instead has certain random
parameters.

In a realistic situation, there are always at least some
parameters characterizing the communication signal that are not known.
For instance, in high frequency communication via the ionosphere and
in channels employing tropospheric propagation, the signal received
usually fluctuates in amplitude and phase due to fading and multipath
effects., These effects are usually modeled by assuming certain
parameters of the communication signal to be random variables. Signal
detection in this case is often referred to as the composite hypothesis
- testing problem.

The technique for determining an optimum processor for detecting
the binary signals having random parameters is straightforward, because
the only new feature is finding p(R|Hk), where k=a or b, when certain
parameters are random. For the case when the random parameters have
the same statistics on both hypotheses, the 1ikelihood ratio is simply
given by

(5-1)

P(RIH,)
L.R. b

e PORTF,T

Jp(RlF:Hb) ¢ p(I‘) . dr
1im
Noeo J;(RIF’Ha) « p(r) - dr

where p(r) is the probability density function for the parameter
vector r, and p(R|r,llk) is the density function of R under
hypothesis Hk for a given r [22].

In this chapter we consider the binary signals of the form:

Ha: a(t)

f . ea(t) . cos(wat + ¢S)
(5-2)

H

pe b(t) = f . e (t) - cos(wpt + ¢)
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where the amplitude f is a Rayleigh random variable and the phase
9 is assumed uniformly distributed between -r and =.

i

Three commonly used methods for transmitting binary signals over
an additive Gaussian noise channel are on-off keying (ASK), frequency- ﬂ
shift keying (FSK) and phase-shift keying (PSK). It is apparent that
the model we have here can be applied to either the ASK or FSK case.

Py

PRSP

The signals given in Eq. (5-2) may be rewritten as 5

a(t) rua(t) Va(t) ;

(5-3) = X -y ;]
b(t) up(t) - V() 2

where we define 1

P
AASAA LS

(5-4) x &f . cos ¢

-

(5-5) y af . sin g -3
(5-6) u (t) 4 e (t) - cos wt, k=aandb, :
and .

(5-7) vk(t) A_ek(t) - sin gt . ;

x and y are independent zero-mean Gaussian random variables with
equal variances, say 0% [23]. Let

X -]
o [3]

r

b

2

then the density function for the random vector r may be written O
as "
2,-1 x2 + 2 j

(5-8)  p(r) = (2no7)"" - exp |- -2—2—1— -
g o ot

Since uk(t) and vy (t) do not contain unknown parameters, they are
completely known functions. Moreover, they are 900 out of phase.
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The desired signal may then be considered as the sum of two signals
for which the amplitudes are Gaussian random variables.

Under hypothesis Hp, the density of R associated with an
m-element antenna array and an N-term Karhunen-Loéve expansion

:
b is equal to
- X _ iy
® 201, -
(5-9) oIy = [ p(RITH) - « dx dy B
21TOI.. _
-y
In Eq. (5-9), the conditional density is given by 75
exn{- %-(R-B)T - Q- (R-B)} -]
p(RIT,H,) = 1im o
el PR .
3
= 1im ,___l_______ . .
= ™|
1 " ([T o 5
. exps- ¥ g’jgl [J_T ri(thrs(z) « Hi5(t.z) - dt dz 4
m T o :":
¢ “T ri(£)by(2) - Hj(t.2) - dt az |
A
[ wngo :
- 1Z§_ j = bi(t)bj(z) . Hij(t,z) . dt d%}

LR

From Eq. (5-3), we obtain
(5'1]) ¥
by (t)b,(z) = X2 . up;(t) ups(z) + ¥ - Vpi () vp5(2)

- XY [ub1(t) ubJ(z) v, (t) vbJ(z)]

In terms of the in-phase and quadrature components of b(t), we may
rewrite
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(5-12)

L.(r)
. e’ 2
p(RIF,Hb) = lim —. exp {-x —
W den™ k| L%
B Y
2 b b
A A S Lpu(r) + yiy,(r)
0'1.| UF
where we define
(5-13)
2 m T -
ap A of i§j=1 jJ-T ubi(t) ubj(z) . Hij(t’z) .« dt dz
" P iepae - 00 ([ uieg) - ugl
= u . (t.)dt - “ u . (ts) « u.(z.) «
By 351 Jop BRI i,j=1 Jdop biT b3**J
« ¥(t,z) - dt d;}
(5-14)

o M T -
oot I ”T Vpi () - vys(2) + KS(t,2) - dt a2

2
_ o m T 2 m T
). J-Tvbi(ti)dt - i§§=1 ”-Tvbi(ti)vbj(zj) .
v(t,z) - dt dz}
(5-15) .
m
b A.of i§j21 JJ-T ubi(t)vbj(z) . H?j(t,z) . dt dz
2
or
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(5-16) .
Lp,(" 2 1?}_ “—T Y‘,-(t)ubj(z) . H:j(t,z) . dt dz
1 m (T
= h_»; i=z] J_T ri(ti)ubi(ti)dt
m T
- i’zj:Z] “—T ri(ti)-ubj(zj) - ¥(t,z) . dt dz
(5-17)

i
() 2= 01 [ vyt - jee) - ae e

1 m T
" h '21 J_T ri{ty)vy;(ty)de

1=

mo(T
L ”_T ri(tydvp;(zg) - ¥(t,z) - dt dz

i,J=1

and

i
(5-18) L") A-% zg_ I, rit) gt - e gt e

Substituting Eq. (5-12) into Eq. (5-9), yields

(5-19) 100

p(RIH.) = ——2— hm
l b 21!0 ’(zw)mN IK

. JJ-N exp Y- 217[x2(0b+]) + yz(Bbﬂ )-ny * Yp
pb

2
- 2xo, Lbu(r‘) - 2y o, bv(r)]}' . dx dy
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The parameters ap, Bp and yp are not randop variables. For a
given interfering power spectrum and variance ofs their values are
controlled by the spacing d, spectral height h,, number of element
m, etc. Lpy(r) and Lp,(r) are Gaussian random variables, containing
the information needea for decision making. From their expressions,
we see that Lpy(r) and L?v(r) may be realized by schemes similar to
the one shown in Fig. 3-1. It will become clear later that the
random variable Lp(r) is irrelevant in the hypothesis testing.
Equation (5-19) may be simplified by employing

o 2
J exp<y - Lii.%L.dz:z."G

%

The procedure for simplification is straightforward but tedious. Let

(5-20) ap(LL,) A (ab+1).L§v(r) + 2oLy (P (r) + (sb+])-L§u(r)

and
(5-21)  uplesar) s Gyt1) - gy + 1) =y2 .
We find that

(5-22) 2
(o} (L ’L )
L.(r) J% b uty

u B sy
P(RIHy) = Tim & e

N ,(&)mNIH ’ub(a,g,y)

Replacing the subscript b by a in Eq. (5-13) through Eq. (5-17), we
generate a set of new functions which are the counterparts of abs Bbs
Ybs Lpy(r) and Lpy(r) under hypothesis Hy. We denote them bY aas 8as
Yas Lau(r) and Lav(r), respectively. For example

m T
aal 'EZ,JI='I JJ-T uai(t) . uaj(Z) . I{,ij(t’z) . dt dz .

The density of R under Hy may be formulated in the same manner.
P(R|Ha) is readily obtained if pp(Ly,Ly) and u p(as gsy) in Eq. (5-22)
are replaced by their counterparts rallysty) and ya(a,8,y)s etc.
Hence, the likelihood ratio is given by
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(5-23)
p(R[H,)
L.R. = 1lim ———
No= p(R[H,)
“a(aQBsY) (Og' A (L sL ) 0?1 Aa(Lu’Lv)
- Ub oy ByY ° eXp .1.2_ “b{a’Ban ) ua[a’BQYj

Taking the logarithm and incorporating common terms and known
functions in the threshold, we obtain the equivalent test

(5-24)

Ag(r) = Ua(a’BsY) ¢ Ab(LU’LV) - ub(a9B:Y) * Aa(Lu’Lv)

b
threshold.

XAV I

a

The expression for the test function Aq(r) is quite complicated.

The decision process relies on observing four sufficient statistics
Lky(r) and Lky(r), k = a and b, which are Gaussian random variables.
From Eq. (5-24), we note that tne opt1mum processor, in general,
consists of two similar portions, i.e., Aa(Lu,L ) and Ab%Lu,Lv

A scheme for generating Ab(Lu v) is shown in F1g. 5-1.

B. The Distribution function

To find the statistics of the test function Ag(r), we need to
determine its distribution. In theory, the distrigution of A (r)
under each hypothesis may be calculated by the integral 9

(5-25)

FalhIf) = JJJJP(Lbu’va’Lau Lav M) dLp,edipyedly,cdiay
y iR

where 2 is the hyperplane defined by Eq. (5-24) and p(Lb ,va,La sLay)
is the joint density of the random variables L (r). Y w
and Lb (r) under hypothesis Hy -

The statistics of Lku(r) and Lkv(r), where k=a and b, under
both hypothesis are given in Appendix B. In general, they are cor-

related Gaussian random variables with zero-means. Thus the 4 x 4
covariance matrix associated with the density function p (Lbu' va,
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Fig. 5-1--A scheme for generating Ab(Lu,Lv).

Lays Lay) does not have any zero element. We expect that, in general,
tﬁe inverse of this covariance matrix will not be diagonal. Con-
sequently, the expression for the density function is quite com-
plicated. As can be seen from Eq. (5-24), the geometry of the
hyperplane is not simple either. For these reasons, we can see that
the quadruple integral in Eq. (5-25) is difficult to evaluate.

For a constant Aq(r), Eq. (5-24) is the equation of an ellipsoid v
of four dimensions. To simplify the geometry of R, we shall o
diagonalize the quadratic equation defining7tx. The test function
Ag(r) may be written as

PUPSPPASDE I WS T S

r ar 1T -
Lbu(r) Ua'Yb ua(BbH) 0 0 Lbu(Y‘)
A (r) = :
g(r) Lay(r) 0 0 up* (@ t1) wpey, Lav(r) 3
_Lau(r)_ i 0 0 MpYa ub°(8a+1{J LLau(r)4 -
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Apparently, the coordinates which diagonalize

Agk(r) A
Lku(r) uq’Yk Uq’(8k+]) Lku(r) s
where
kK#gq
k=aand b
and
q = a and b,

will also dianonalize the quadratic equation Ag(r). Let*

(5-27) JE;; 0

D, A&
0 J&%2
u ak + Bk +2 - 6k 0
I .k #a,
0 ak+8k+2+6k
where

2 2
8y AJ(ak - 8 )" + Ay

Also, let us define

T Y TR %1 a2

(5-28) G A= s

{2

S kL Joy8tsy JontBitoy %21 k22

i

&

. *

> Ek] and £xo are the eigenvalues associated with the 2 x 2 symmetric
" matrix given in the right side of Eq. (5-26).

§
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Gk is an orthonormal matrix, Then we find that in terms of the
normal coordinates xbu(r)"fbv(r)"‘(au(r) and fav(r), where

fkv(r) Lkv(r)
(5-29) =D .G -

LM Ly (7

the test function Ag(r') has the simple representation,
Hp
_p2 2 2 2 >

(5-30) A (r) =, (r) +f5, () L5, (r) -3, (v) < threshold.
a

As a result, the distribution of Ag(r') may be evaluated alternatively
by

Fa(AIR,) = “”P‘fbu'vfbv'fau’fav H)dh df, - df, df, -
R

The statistics of Lk, and Ly, k=a and b, under both hypotheses
are given in Appendix B. In general, they are correlated Gaussian
random variables with zero-means. Being linear functions of Lp,,
Lbys Lau and Lay, the new coordinates are therefore also zero-mean
Gaussian random variables. The covariance matrix K gassociated
with the normal coordinates is a 4 x 4 matrix L

(5-31) - 2 -
‘ﬁbu ‘fbul'bv ‘fbu‘fau ‘fbu‘rav ]
K, = E Eovtbu ‘igv ‘fbv‘fﬁu Lovkav I

£ cﬁaul‘bu fau bv ‘fgu ‘fauxav
L_‘ﬁavl'bu xav bv iav’fau ‘fzv

From Eq. (5-29) we find that in general only

(5-32) EL L) =0 k=a,b.
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For this reason the four jointly normal random var1ab1es;i s cannot

be statistically independent, The variablesX's in the expression N
for the joint density p(£p ibv’ dausLay) are only partially de- o
coupled As a result of tg1s, the quadruple integral Eq. (5-31) :
remains difficult to integrate. It appears that a s1mp1e, analytical

formula for the distribution of the test function A (r) given by

Eq. (5-24) seems not obtainable.

Lme e o o v ” n
N g . .
FERPEARI . .

C. The Probability Equations, ASK

.
—

One commonly used method for transmitting the binary symbols 0
and 1 using ASK signals is to send a specific signal for the symbol
1 and to send no signal at all for the symbol 0. For this special
case, only two test variables remain in the equivalent 1ikelihood
ratio test defined by Eq. (5-24). Besides, the distribution of the
test function may be obtained by evaluating a double integral.

)

Suppose the signal b(t) is sent for the symbol 1. The signals
received by the ith element under both hypotheses are

:
Ho: r.(t) = n.(t) + w,(t) B
L ri(t) = ni(t) + wi(t) + X'ubi(t) -y - Vbi(t) ,é
Setting ua(t) = va(t) = 0, we obtain from Eq. (5-24) that 3
(5-38) i
Mr) & (og#1) = L2 (F) + 2y + L (R)L, (1) + (8p#1) = L2 (r)
H T

b
> ~

The distribution of A(r) may be evaluated by

F(ATH) = JJ Pysdyy M) - a&y * dyy ;7

- We shall see later that even for this special case, the double

- integral given above can not be evaluated analytically either.

e However, comparatively speaking, the expression for the distribution

- is quite simple. —
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The structure of the optimum processor for detecting on-off
binary signals is just half the general system 1b(r). In the Lp,(r)
and Lpy( ") plane the hypothesis Hy is chosen whenever A(r) appears
within the ellipse or Hp is chosen whenever otherwise. The geometry
(e.g., major axis) of the ellipse is decided by the threshold, a p, 8p
and Yp. From Eq. (5-29) we know that the quadratic equation Eq. (5-34)
may be rewritten as H

b

2 2,20 2
(5-35)  A(r) =.£bv(r) +£bl}r) ;a n
where*

(5-36) oLy =JEy + (917 Ly * Ip12 L)

- =lz . .
(5-37) o, /%2 * (9p21 Lpy * 922 Ly

Making use of Eqs. (5-36) and (5-37), we find that the variances of
dbv(r and.{bu(r) under hypothesis Hk, k=a and b, are equal to

(5-38)

2 2, p2
opyi & E {fbv(r)lﬂk}
€
] (o), + B+ 6.) ] (2+a, +8, +6, ) X
202 b b b Z b""b b
r

(5-39)
Uguk A var beu(r)lHk}

€

k
=—5 (ab + By - cb) . [%-(2+ab+sb-5b)]

*Because the factor ua(a,B,y) does not appear in Eq. (5-34), the
eigenvalues ¢p] and £p2 in Eq. (5-36) are equal to L(apt+ep*t2-6p)
and %(ab+6b+2+6b), respectively.
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where €y = 0 if k= a € = 1ifk=0>b

A(r) is nonnegative because X, and Xpy are real functions. The
distribution function FA(AIHk) is simply given by

2
(5-40) _dbv _ & bu
F.(AlH,) = 1 IJ e 2"gvk 20%uk - df, df
) o

(z sin e)2 _ [z cos 6)2

2 2

1 Ap2m 2o 200,k

= — e « 2 dz - ds
bvk buk ‘0/e8=0

The probability density function of the test function A(r) under
hypothesis Hk thus is

(5-41)

aF . (AlH,) aF , (lH,)
A k _ 1 AYTTK
pA(AlHk) 4 FY

2Jn 2 z=J%
_A sine + cos?r
er 02 02
o . J e VUbvk  buk [ |
Tropek ouk o

where A > 0. This integral can not be integrated analytically. One
may use a numerical integration technique to get the value. Denoting
the probability of choosing hypothesis Hy when Hp is present by Pq,
and the probability of choosing Hp when Ba is present by Pf and
referring to Fig. 5-2, we find that

% J:tw

Fig. 5-2--The decision plane,
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(5-42)
Py = J PA(Ale) « dA
n
_n sin%e + cos?e
2\ 7 2
. 2n Jbvb  “bub
= 211’0 a ‘ I ) de
bvb~bub 0 sinze . cosze
02 0'2
bvb bub
and

(5-43) Pe = Jw PA(AIHa) e dA
n

whose expression is similar to Eq. (5-42) and can be readily obtained

from the same equation when the third subscripts of opyp and opyp
are changed from b to a. Before presenting some numerical results,
we shall briefly discuss the parameters s By and S

D. On Parameters Oy s Bk and \

Examining the equations for Pq and Pf, we note that they are
mainly controlled by the parameters ap, 8b and yp. In the case
of the general optimum detection system Eq. (5-24), we expect that
the problem of optimizing the system performance would become a
problem of designing proper values for ag, Bk and yk, where k=a and
b. For this reason, we study the properties of parameters ap, 8p
and vh. In practice, the carrier frequency wp is much greater than
the one used in the modulating signal ep(t). Very little error
would be introduced when we approximate ubi(ti) and Vbi(ti) by

(5-44) ub'i(t'i) X eb(t) . COS{wb[t-(m-l)v]-('i-'l)mb('r-\))}
and
(5-45) Vbi(ti) pY eb(t) . sin{w[t-(m-l)v]-(i-l)mb(r-v)}

Thus we obtain the following closed forms:
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(5-46)

sin %‘- wb(T-v)

m
T ou(ts) £ + ey (t)ecostu [t - Tl (r+v) ]
i=1 sin 29 (1=v)

(5-47)

m
_Z] Vbi(ti) . eb(t)-sin{wb[t - m%l (t+v) 1}
i=

and

(5-48)

m sin mmb\r-v) eb(t) . o
igl ubi(ti)Vbi(ti) = wb(T-O) - 7 . s1n{2wb[t - = (t+v) ]}

Comparing their definitions with the mean of L(R), Eq. (3-4), we con-
clude that parameters ab, Bh and my,(6,¢636) possess the same di-
rectional property. Using the results just obtained for

m m
ig] upi(t)s iZ] Vpilts)
and

m
.Z] upi (t5) vpi(ty),
i=

we may derive the closed form representations of aps Bp and yyp.

For the sake of saving space we write them in a common expression
designated as g(e],ezg.
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(5-49)
( ) 012, ( ) T eg(t)
g(6,,8,) A * m « sin(6,-8,) - j dt
1°%) L 2 L e B
o? sin mwb(r-v) T eg(t)

* F‘; " Sin wb(r-v) : J-T z

. m-1
. s1n{2wb[t - —?—-(T+v)] + 048, } . dt

02 ?
r

R

sin g— wb('r-\))

sin -Z-tl (t=v)

+ cosYu, [F - E%l (t+v) + e]] .

. sin{wb [z - Eil (t+v)] + 92} . ¥v(t,z) . dt dz

where 61 and 62 assume different values under different circumstances.

In terms of g(e],ez), we find that

(5-50) o, = g(0 , 7/2)
Bb = 9(- 7.‘/2: 0)
and
Yp = g(0,0).

The function ub(t) is real, so
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1 JJ_T upi (t5) - u,5(z5) - ¥(t,z) - dt dz

i,3=1
m T 2
121 J-T ubi(ti)¢2(t) - dt

=1 w

= >0

~18

From Eqs. (5-13) and (5-14), we thus establish that

2

o m (T 2
(5-51) oy <p- ) J up; (t,)dt

w =1 /=T
and
(5-52) " AT

- By < J ve.(t.)dt
b m— -i:] _T b1 1

The upper bounds,_in Eq. (5-5]) and Eq. (5-52) are nonnegative because
the integrands ugi(ti) and vf;(t;) are nonnegative, As a matter of
fact, these bounds are just equai to the sum of the first two terms
of Eq. (5-49). For the case when the interference is a white noise
process with flat spectrum height hn’ Eq. (5-49) reduces to

(5-53)

5? ] T eg(t)
gw(e],ez) = 'rw- m* S1n(62-9-.) . J-T -7—dt
o? sin mwb(T-v) T eg(t)
+ ﬁ;" sin wb(r-v) : J T 2 '

. sin{2wb[t - m%l(r+v)]+61 + 92} dt

1 sin -'g-wb(r-v)

'
i’l “‘JQN

m +-hl sin ;9- (t=v)

n
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(5-53) 5

(Cont.) |

." ‘
[ |

T
. JT eg(t) «COS “b[; - ﬂ%?L (T+v)] o (e

. S.in wb [ - mél (T+\))] + 62 . dt [

1
Discarding numerically small terms in Eq. (5-53), we obtain the ]
following approximations good for the white noise interference: 1
(5-54) 2] 1
0% 1 sin g-wb(r-v) T eg(t)

W m+ 2\ sin b (1=v) ol j
AT '

When the spacing d between two adjacent antennas is
Ap )
(5-58) d = m[cos 8 ~ cos ¢T’é-dop’ !
where Ay is the wavelength corresponding to the angular frequency Wy s )
then .
¢
(5-56)  sin % w (t-v) = sin my (1-v) = 0 ‘3
The spacing dop has been referred to as the optimum spacing for the )
given 8, ¢ and m, As a result of placing an array at this particular ]
spacing, we find that* )
m " m ~ 3
- - 3
(5-57) L upi(ty) = L vp(ty) = 0 ;
i=1 i=1 ]
* j
The definition of tj is: tj A t-(m-i)v = t-(m-i) d/c cos ¢. )
When the ogtimum spacing is used in calculating ti’ we denote .
the ti by t.. ]
1 -«
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(5-58) igl up; (£;)vp () = 0
Later we shall see that these relations are extremely significant, ;f
From the general expression Eq. (5-49), we also obtain
v o O T el(t)
(5-59) ab'Bb'T'"“J —2—dt
w T .
MY ﬁ

Y = 0
which are independent of the power spectrum of the interference.
Notice that ap is just equal to the first term of Eq. (5-49). Since

it is much greater than the second term of the same equation, ay is .
approximately equal to its bound . —}

We now give a physical interpretation of oph, By and yp. The
interpretation will also apply to the parameters oy, B3 and ya for
the obvious reason. Under hypothesis Hb, the output of the sub-
processor Lbu(r) may be rewritten as

m T
Lou(r) = f= .Z] IT ["i(ti) + wi(ti)] - Upi(ty) - dt

!
t~
3
t~3
%

:
J_T ["i(ti) * wi(ti)] + up;(zg) « ¥(t,z) - dt dz

i3=1 g

o Y
b b :
tXezoye 7 ,i

9 o
Thus the component contributed to the output Lbu(r) by the desired ;?
signal is equal to -
ab Yb 3
X'T'y'T —
GF \’J

Similarly, the component contributed to the output Lb (r) by the
desired signal is equal to v

[

8 Y =
y- b'x'-g' 2y
o op
z?§
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Apparently, large dp and B and small Y, will reduce the influence of
the interference in making decisions. Referring to Eq. (5-3), the
desired signal b(t) may be decomposed into an in-phase component and
a quadrature component, each with a random amplitude. The parameters
dp and By represent the bit energies contributed to Lpy(r) and Lpy(r)
by the signals up(t) and vp(t), respectively. The parameter Yu
represents the cross-energy between the ub(t) and vb(t).

E. Numerical Results, ASK Signals

In this section, we investigate the characteristics of the
optimum detector for detecting the on-off keyed binary signais. le
first investigate how the system responds to a testing signal arriving
from an arbitrary angle . The testing signal used is assumed to
have the same waveform as the desired signal b(t). Again, we con-
sider the case when the interfering signal is a white noise process
with spectral height h,. Later, the error rate performance and
methods of optimizing this performance are also discussed.

Letting Yg ~ 0 and ap % Bp in Eq. (5-34), we thus obtain the
e

processor for detecting the on-off keyed signals corrupted by
directional white noise:

(5-60)  A(r) = (o + 1) L2 (r) + (8, + 1) L2, ()

H
>b 2
< N

Ha

The detection system makes decisions by comparing its processing
output A(r) to a given threshold. Whenever the processing output l
is less than nZ the system signals that Ha is present; otherwise,
the system chooses Hb.

The capability of a detection system of doing its job is
uniquely decided by how the processing output under one hypothesis [
is distinct from the output under another, and the value chosen for
the threshold. A(r) is the result of processing the interference-
contaminated inputs in the manner specified by the right side of 1
Eq. (5-60). Hence, the characteristics of this detection system
are determined by that equation. A(r) is randomly distributed. One
important characteristic of A(r) is its mean, which we now examine.

Since the tegting signal b(t) is assumed to propagate into the

array from angle 8, the input to the ith channel of the processor
is given by
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(5-61) ri(ti) = "i(ti) + wi(ti) + X ubi(ti) - yvbi(ti)
where
(5-62) Gbi(ti) 5 uy [t=-(i-1) %-cos 8 = (m-i) %-cos 4]

and
(5-63)  vp(t.) 8 v, [t-(i-1) S cos § - (m-1) T cos o]

The detection system is optimized for the desired signal arriving
from angle 6, Hence, the sub-processors Lpy(r) and Lp,(r) will
generate the outputs as follows:

(5-64)
Ly, (r) = 7‘]: i;f] JTT F(tu (8 )dt
m T .
- 0 jj_Tri(ti)ubj(zj) C¥(t,2) - dt dz
and
(5-65)

- 1 m (T.
VA w0 J_Tri(ti)vbi(ti)dt

m T .
- 1 JJ_T ri(ti)vbj(zj) + ¥(t,z) - dt dl}'

Referring to Eq. (5-61), we see that the first terms of Lpy(r) and
Lhy(r) no longer represent the coherent correlators, because the
time-shiftings in upj(tj) and vpi(t;) are not equal to those in
upi(tij) and vpi(tj), respectively. The output of the optimum
processor is equal to

(5-66)  A(0,438) = (ap#1)LZ (r) + (g,+1) + L2, (r)

Equation (5-6Q) is just the special case of n(e,436) when g=o. The
variances of Lpy(r) and Lpy(r) may be determined from Eq. (B-18)
and Eq. (B-19), respectively. It is found that
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(5-67)  var {Cbu(r)IHb} = lz (o + Gﬁ + §§)
s

' and
|
-~ - " 4\2 A2 9
(5-68)  var (L, (r)|H} = z (B, + 8 + vp) ]
l" L
where ]
k 2 |
(5-69) o Lp- < Uy uy> i
4
v and
(5-71) YWwE h; <Ups Vp>
i Comparing the right side of Eq. (5-6) with that of Eq. (4-2), we find §
- that they are the same if ¢5=0. We also find that vp(t) is equal :
fo Eq. (4-2) if ¢g = - n/2. Hence the closed form representation for 1
P ap may be readily obtained from Eq. (4-11) when o is set equal to :
- zero and A
h ]
. T J
g [ ety ey« ar .
-T .
is changed to ]
. 05 JT 2( ) -t 4
. e (t) .
~ By jop® ]
1
- As a result, when the interference is a white noise process we find :
- that ;
R
b .
o
" :
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é (5-72) , B

) 2 2
Vi .o (T e (t) _ . -
! o %E;F J—T_g__dt . cosﬁzlmb(r-r)- -i

sin g-wb(?-r) 1 sin g-wb(T-v) sin g'“b(;'v)
- T .

L

Y% e W Y% a -
sin 5= (1=1)  m+ R sin fg_ (1-v) sin 5 (1-v) p
The closed form representations for éb and §b when the interference 3
is a white noise process may be obtained in the same manner, We N
find that
A oA .
(5-73) By N o y
and :
(5-74) ¥, %O
Thus when the interference has a flat spectrum, the mean of A(e,¢;6) )
is simply given by, oz
w
(5-75)  E{A(0,030) [H } = % (0 #1) (o + &2) 1
27 b ;? b b b
r
For the same reason as given in Chapter IV, we study the directional .
characteristics of the system by examining the relative angular -t
response, -
. EA(0,038) |Hy)
(5-76) F(e,436) = 20 * log
E{A(e,¢;e)|Hb}

The signal b(t) is a random process. The mean of its energy in

Ei the observatisn interval [-T,T] is equal to
- T T

- E J b2(t)dt [ = 42 j e2(t) - dt
(| -7 rolT b

We define the signal energy to the total noise power density ratio as

b aUE RS
- el
b
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(5-77)  (S/N) =
hw +h,

T
2 J e (t)-dt
) or J_T b

hy

The quantity

ag

T
r 2
e (t)dt
el

is the signal energy to the internal (white) noise power density
ratio. We proceed to investigate the directional characteristics
through studying the angular response curve.

Figure 5-3 shows the angular response of the detection system
(5°,45°§ which has a 2-element array with spacing 0.865x. In plotting
this curve, we assume (S/N) = 10, hwlhn = 0,1 and

T
o? j—T eg(t)dt =1,

To show the effect of varying the array spacing, the response of the
detector (59,450), which uses the same number of elements with an
increased, spacing (1.731), is given in Fig. 5-4. In Fig. 5-4,
F(59,450;6).is the absolute maximum at 6=50 and ¢ becomes a relative
minimum at =450, Physically, this curve implies that when the
signal b(t) propagates into the array from the angle 6, the average
processor output is the highest. On the other hand the processor
generates almost the lowest output (in average) if the same signal
arrives from the angle ¢. As a matter of fact, 1.73x is the optimum
spacing for m=2, 6=50 and ¢=450,

In Fig. 5-5 through Fig. 5-8 we show the angular response curves
for the detectors (559,450) which are designed for different number
of antennas and different spacings. It is seen in these curves that
the response at the angle corresponding to the incident angle for
the interference is always lower than the response at 6=6. This
suggests that the optimum system possesses the same characteristics
as the one discussed in Chapter IV, In fact, F(6,4;6) may be
written simply as

83

WY W Py

PN SPERERRRCOR0

i ..




4 k
F .
o 10—
1 IS I T N 7 R N B N ]
t! 20 40 60 80 100 120 140 160 180 F
X ‘_: @ 8 ( DEGREES)
- = _io}—
!. <®
ﬁ;? P 3
o —20—
o 1
[T
-3 R
-40— 1
Fig. 5-3--F(5°%,45%;8) vs. & given m=2, d=0.8651,
(S/N)=10 and h /h = 0.1. .
w'n N
1
2
- 5
b 4
- 1 | | | ] ] | | | R
. o
E - ;20\ 40 60 80 10 120 140, 160 180 4
R :
_ . 6 (DEGREES)
F g _io| 9
[ < ;
[ o 20— '
» A
g )
[ - “w :q
. -30— :
&
b_'.
- -40l—
g
r -4

Fig. 5-4--F(5°,42%;6) vs. 8 given m=2, d=1.73a,
(S/N)=10 and h /h "= 0.1.

84

L -




—— e W = = e i e =
IR A e SR 2 PE medch B R hd PRl

e Ty TN e e T T T T T ' ]
3 |
)
. 2
8 g
- o 1 | | A | ] ] J 2
‘ 20 40 60 80 100 120 140 160 180 1
iﬁ 8 ( DEGREES) —
T
3 g
- ~-20
«“®
P ; *
o ~30}— ¥
4 -
3 -40|— .
—
_sol— ]
~ 'J
Fig. 5-5--F(55°,45%;8) vs. & given m=4, d=0.936%, §
(S/N)=10 and hw/hn = 0.1. 4
-
o | | 1 | l 1 | J ‘
20 40 60 80 100 120 140 160 180 3
A R
6 ( DEGREES ) ]
...|oL-— n e
8 ol |
< :
'.3: -30— R
3 -
- -
-40 :
-sol- “
Fig. 5-6--F(55°,45%,8) vs. § given m=4, d=1.872),
(S/N)=10 and hw/hn = 0.1.
85 =




S N EON NN RN N N N N

20 40 60 80 100 120 140 160 180
A
8 ( DEGREES )

-50%—

Fig. 5-7--F(55°,45%;8) vs. & given m=7, d=0.537x,

n
(S/N)=10 and hw/hn 0.1.

- % T %
(5-78) F(6,¢;8) = 20 -10g —
ab+ab

The parameter ap is often much greater than one, hence F(e,¢;§)
may be approximated by

~

a
(5-79) F(8,030) % 40 - 109(59
b

Because ap and my;(6,4;8) have the same directional property, it is
no surprise that goth systems have the similar characteristics. In
plotting Fig. 5-5 and Fig. 5-7 an optimum spacing is used by each
detector. As a result, the average processor output is always the
highest when the signal b(t) propagates into the array from the
desired source.

To examine the behavior of F(6,$;8) when 6=¢, we show four curves
in Fig. 5-9 through Fig. 5-12, In plotting these curves, we again let
(s/N) = 10, h,lh, = 0.1 and

:
o2 j e2(t)dt = 1.
-T
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It is seen that F(e,¢;5) always assumes the peak value at 3=e=¢ for
this extreme case. When m=2, S/N=10 and

I
2 2 _
o J-T eb(t)dt =1,

the parameter o is equal to 110 for the system designed for the
optimum spacing. For the case shown in Fig. 5-9, ap is only equal

to 5.238. The detection error is small if ap is large. (The
equation for detection error will be given in Eq. (5-88). Apparently,
the error rate performance is extremely poor when 6=¢.

The basic properties of the response curve discussed in this
section do not change if the values chosen for hy,, (S/N), etc. were
different. But the error rate performance of the optimum detector
does change with these factors. With this background, we next
investigate the error rate performance.

There is no need to diagonalize the quadratic equation (5-34)
when the interference is a white noise process, because yp & 0.
But nevertheless, the results shown in Section V.C are still
applicable*, Letting yp = 0 and o = gb, from Eqs. (5-38) and (5-39)
we obtain

*The eigenvalues are &7 = ggland £ = a? + 1 when yp = 0, The
a

new and the primary coordinates are related by
¢Eu 1.0 va(r)
89 =1
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D9 ~ SN ER)

CARE - TR
(5-80) N Gg
and
ogva ) oﬁua =3;?(ab*])
r
(5-81) N 02

Also, as a result of v, & 0 and ap % Bp, the probabilities of making

correct and false decisions on whether hypothesis Hb is true reduce
to

n
-T2
20
(5-82) Py %e b
and
- _ﬂz
20
(5-83) P e a

In practice, the probabilities for each hypothesis to be present are
equal so that the total probability of making wrong decisions on Hb
is

_.n n

20 20

(5-84) P %05e 2+05(1-e D)

e'\:

The error would be 0.5 if the threshold is set at zero or at infinity.
Solving 3P,/3n = 0 for n, we find that the lowest total detection
error by adgusting the threshold is obtained when

2 2 2

o. O (o]
n=2 -%——4% 1n<i;i;)

%% a

(5-85)

2
(“b + ])
=2 --—-;;——-—- n(ay#1) A n,

Op
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At n= n,, we denote P4 and P¢ by Pg(ny) and Pg(ng), respectively.
When n = e the two probabilities are related by

_° g Palny)
(5-85) Pf('ﬂo) -0—2-' Pd(ﬁo) = a—b_-'_'!r—
b

where og
2 1
g 0 =0 ]
| °b a b _ b
(5-87)  Pyl(n,) = ~z = (ay+1)
a

The corresponding probability of making wrong decisio?s on Hb then is

a

[+ ]
(5-88)  pgln,) = 0.5 - 0.5 - 'ab—br'r sy +1) P

In Eq. (5-55), the parameter oy, is expressed in terms of v and v.
The delay times t and v depend on tRe incident angles 6 and ¢; so

does the optimum spacing. For a given spacing d and the array size

m, the ratio d/d,, varies with the angles & and ¢. Thus the parameter
%, may be written as a function of the normalized spacing d/dop,

(5-89) 2f d
o : Sl | o ] e2(t)dt
O N e )M - . -
b N —
w W sin mw Z2h
m+ -rn aop W

We next compare the detection errors Pg(ng) for the systems use the
same array size but are designed to be o gimum for the different
spacings. We shall plot the error pef g against the normalized
spacing. In plotting the curve, we assign values to (S/N) and hy/h,,.
By doing this, the signal energy to the internal noise power density
ratio is specified alternatively by

T
o I-T et . g h
n
R, = (S/N) - (1 *}',—)
w
In Fig. 5-13 we show Pe(ng) vs d/dgp, where 0.2 < d/dO? < 2,
]

for m=2, The values used for S/N and hp/hy are 10 and 31.6
respectively. In Fig. 5-13, Pg(ng) becomes minimum when the

(5-90)
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Fig. 5-13-=Pe(ng) vs. d/dop given m=2, h“/hw=31.61 and (S/N)=10.

normalized spacing is equal to 1, i.e., when the optimum spacing is 2
i used by the detection system, The same type of curves given m=4 and
d 8 are shown in Fig. 5-14 and Fig. 5-15, respectively. Again, the
! detection errors P (n,) assume the Towest value at d = d . H
s 3 e op ;a
v , The reason for the detector designed for an optimum spacing to
- have the fewest decision mistakes can be explained mathematically :T
& by the behavior of Pa(ng). In Eq. (5-88) we see that Pa(ng) 5
Ey decreases as a increases., Varying the spacing d, we f?nd that
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ap reaches the maximum at d=dgp. Hence the error Pe(n ) reaches the
minimum at this particular spacing. 0

It was pointed out in Section V.D that o is proportional to
the component contributed to the output of the subprocessor Lp,(r)
by the desired signal. The ability for the internal noise ans
external interference to affect the decisions becomes less effective
when op gets large. Hence, the detection error is minimized when an
optimum spacing is employed to design the detector. For the rest of
this section, we use Pg(min) to denote the total error rate for the
syst:m which sets the threshold at né and is designed for an optimum
spacing.

To emphasize, Pe(min) is the Towest detection error we can
possibly obtain for a given array size and the signal energy to the
internal noise power density ratio. Moreover, the error Pe(min) is
not affected by the incident angles o and ¢. The reason is that
the parameters ap, Bp and yp are not dependent on ¢ and ¢ when the
system is designed for an optimum spacing.
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Up to this point in this section, the interfering signal is
assumed to have a flat power spectrum. The conditions used to
get Eq. (5-56) through Eq. (5-88) are yp=0 and ap=Bp which are
correct because the interference is a white noise process. In
Section V.D we formally show that regardless of the power spectrum
these conditions are automatically satisfied for the system designed
for the optimum spacing for a given 6,¢ and m. Hence, replacing
ap by &, in Eq. (5-56) through Eq. (5-88), we obtain the corresponding
equations valid for the system designed for the optimum spacing and
optimized for an arbitrary power spectrum. The error Pe(min)
associated with this detection system is equal to
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(5"9]) Pe(m'ln) = 0.5 - 0.5 - —&b—rT (&b+'|)

where T
o§ J eﬁ(t)-dt
=T

Py

(5-92) 4§ = g .

Since 3b is invariant to the power spectrum of the interferin
signal, it is apparent that this lowest possible error Pe(min?

does not change from one power spectrum to another. Equation (5-92)
indicates that the detection error Pg(min) is uniquely determined by
the array size m and the signal energy to the internal noise power
density ratio.

We next show the curves of Pg(min) of several detectors. In
plotting these curves, we assume that h, is constant so that the
values assigned to the spectral height ratio hy/h,, and ratio (S/N)
specify the desired signal energy to the internal white noise power
density ratio. For a given hy/h,, the relation between (S/N) and
the signal energy to the internal noise power density ratio is
given by Eq. (5-90). Since we shall plot Pe(min) against (S/N),
the relation between (S/N) and the signal energy to the internal
noise power density ratio is shown in Fig. 5-16 for convenience.

The error Pg(min) vs. S/N given m=2 is shown in Fig. 5-17, The
values chosen for the spectral height ratio hp/hy are 3.161, 10,
31.61 and 100. For a given S/N, the error rate Pa(min) drops as
the ratio hy/hy drops. Physically, this means that the lowest possible
detection error decreases if the internal noise level decreases. In
Chapter IV, we have concluded that the internal noise degrades the
performance of the optimum detector L R;. Here we find that the
internal noise affects the detector A(r) in the same manner. For
a constant internal noise level, we may either increase the array
size or raise the desired signal level for improving the error rate
performance. The same type of curves given m=4, 8 and 15 are shown
in Fig. 5-18 through Fig. 5-20. It is observed that Pe(min) drops
steadily as the array size increases from 2 to 15.

The lowest detection error available to the detector A(r) is far
greater than the error provided by the system L(R) for detecting the
completely known binary signals. The reason for having such a large
difference is obviously attributed to the random phase and random
amplitude which inevitably cause many decision mistakes for the
detector A(r).
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CHAPTER VI
ON SYSTEMS DESIGNED FOR THE OPTIMUM SPACING

A. The Interference-Free Spacing

When the desired binary signals are known exactly, we have
concluded from the detection error given in Eq. (3-32) that the
number of wrong decisions is minimized when the detection system
is designed for the optimum spacing. The same conclusion is also
obtained for the random phase and amplitude ASK binary detector
discussed in the last chapter. In this section, we examine L(R),
Lpy(r) and Lpy(r) for a unified explanation for this phenomenon,
It will become clear later, the optimum spacing may be called the
interference~free spacing.

The definitions for the random variables L(R), Lp,(r) and
Lpy(r) are very similar. They may be represented by tge general
expression Lg given below
(6-1)
T m
Lg A-J-T iZ] ri(ti)gi(ti) - dt

1 1 ‘ T m
B S S I i 0, (8) « T ri(tdt .

i=1

T m
. I_T ¢,(2) jZ1 94(z;) - dz
because L(R) = Lg if g{t) = s(t), Lpu(r) = Lg if g(t) = up(t) and

Lpy (r) = L% when'g(t) = -vp(t). When optimui-spaced arrays are used

in both detection systems, we have shown in Section IV.F and Section
V.D that

m
(6-2) iZ] gi(%i) =0

and

m n n
(6-3) 121 "bi(ti) Vbi(ti) =0
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In Eq. (6-1), as a result of using an optimum-spaced array, the
second term, which reflects the characteristics of the interference,
vanishes. Hence,

g T m “u N
(6-4) TR = | RN ARNIAREE

N -]T m A" Y
(6-5) Ly (r) =no [_T L rylE) ugy(Ey) - at

and

n 1 T m n o
CORMENUOETT AN R PRRNCARMGER

Equation (6-4) through Eq. (6-6) imply that the sub-system
which varies with the power spectrum of the interfering signal is
no longer needed when the detection system is designed for the
gptimum spacing. The input to the ith channel under hypothesis Hb
is

(6-7) ro(F;) = n Ct=(m-1)v] + wy(¥;) + by(E})

where the signal b(t) is assumed to be deterministic if ri(%i) is
substituted into Eq. (6-4), and b(t) is assumed to have a random
phas?sang amplitude when rj(tj) is substituted into Eq. (6-5) and
qu '6 .

Substituting ri(%i) into Eq. (6-4) and simplifying the equation
by using Eq. (6-2), we obtain

g ."1 I-‘:-‘ i ARG

(6-8)
n T m n n T m " n
: L(R) = J_T PENCHENCARES J_T PN RACHIEL
§; similarly,
g (6-9)

" T m o, T m ~ n,
Ly, (r) = x - J_T PREACHER J_T PRRIARACYRE
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and
(6-10)

T m " T
va(r) =y I ) vgi(ti) . dt - J

m
n, n

N 4" N

The simplified versions of L(R), Lpy(r) and Lpy(r) do not
contain the external interfering signal n(t). This implies that the
influence from the interference in the decision process is eliminated
completely by the processor when the detector is designed for an
optimum spacing. When the processor output E(R) is compared to the
threshold to make decisions, only the internal white noise wij(t) can
cause decision mistakes for the case when the desired signals are
completely known. For signals with random amplitude and phase, the
uncertainty in the values of x and y also cause decision errors. This
explains why the detection error for the optimum system A&r) ismfar
greajer than the system L(R). But, nevertheless, all of L(R), Lp,(r)
and Lpy(r) are interference free. Physically, we may say that the
optimum spacing is an interference-free spacing. For a given m, hy,
etc., it is this very property which enables the detector designed
for an optimum spacing to have the ]dest detection error. Because
the eigenfunctions do not appear in L(R), Lhy(r) and Lpy(r) any more,
the structures for detectors L(R) and X(r) do not vary ¥rom one power
spectrum to another.

B. FSK Binary Detector

Equation (5-2) represents FSK binary signals when wa#uwp. In
practice, the carrier frequency under one hypothesis differs from
that under the other only slightly. Also, it is a general practice
to use identical modulating signals for both hypotheses. Let

(6-11) ek(t) = e(t), k =a and b,
and

(6-]2) wk - wo + Ekwd [

where wd << wg, €g = -1 under hypothesis Ha and ey = 1 under hypothesis
Hb' For simp?icity, we define

(6-13) uo(t) A e(t) » cos wyt
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and

(6-14) vo(t) A e(t) » sin w t
Then, from Eq. (5-6), we have

(6-15) uk(t) = uo(t) » cos uyt - g - vo(t) - sin ut
and

(6-16) vk(t) =g uo(t) . sin u,t + vo(t) « €OS uyt

In this section, we investigate the form of the optimum system for
detecting the FSK binary signals in Eq. (5-2) when the spacing chosen
for the array is equal to the optimum spacing defined in terms of the
wavelength Ao associated with the angular frequency A More
precisely,

A
(6-17) d_ a-—2
% T m |cos 6 - cos o]

At this particular spacing, if |cos & - cos ¢| is not too small,
negligible error will be introduced if we approximate

(6-18) wd[t - (m=1)v = (i=1)(r=-v)] % gt
n n, N

Consequently, "ki(ti) and Vki(ti) may be approximated by

19 t.) v u o (t t v (t i
(6-19) "ki(ti) X "oi( 1) * €0s ugt - € Voi(ti) « sin w4t
and
(6-20) v (% ) ¥e, o u (% ) e sinw,t +v (% ) * cos w,t

ki*"i’ v "k oi'"i “d oi'"i |

m
respectively. Since Z u i(ti) 121 voi(%i) = 0, we conclude
from Eqs. (6-19) and (6-20) that
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4 mo :
(6-21) ] u(E) =0
i=1
[
m n

and

m ”~ ~
(6-23) S uy(E) vi(E) <0

The eigenfunction-dependent terms once again drop out of the
equation of the test variables Lku(r) and Lkv(r); so we find

P :
;, n, _ _'I m n, 0,
(6-24) Lku(r) = hw j z ri(ti) uki(ti) . dt
- T i=1
- and

N -1 T m A n
(6_25) Lkv(r) = --hw J-T i=z] ri(t.i) vki(ti) . dt

N N
where uki(t;) apd vii(t;) are given by Eq. (6-19) and Eq. (6-20),
respectively. Li,(r) and Ly (r) can be shown free from interfering
signal. For this reason, it is believed that the FSK binary detector
designed for an optimum spacing also provides the lowest detection
error. Because an identical modulating signal is employed under
each hypothesis, we know that

2
o T 2

(6-26) &k=3k=h-‘"--m.j &4t gt , k = a and b,
w =T

Hence,

O g

"
-

3 (6'27) :‘;(“0697) = ’I\I‘b(a:BsY)

-4

T v p e e ey
; AT AE AR R
. Pr ettty cente e
. FAF ARSI AP

H Resetting the threshold, from Eq. (5-24), we obtain a reduced
Tikelihood ratio test for FSK binary signals received by an
t optimum-spacing array,
[ i
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(6-28)  Kegy (r) & L2,(r) + L2 () = L2(r) - £2(r)

Hp

>

< threshold
H

a

4" n
Writing Ly, (r) and tkv(r) directly in terms of Uoiéti) and Voi(%i)s
and substituting the new equations for Ty,(r) and Lyy(r) into

Eq. (6-28), we obtain a simpler optimum detector:

(6-29)
v T N . T N

n

T
n
- J—T Au(ti) - cos w4t - dt . I—T Av(ti) . sin g4t - dt

Hy

>

< threshold

Ha
where

A m n A

A (tg) = iZ] ri(ty) ug;(ty)

and

(6-30)  A(t,) = §1 r(8) vy (E)

B. On General Random Phase and
andom Amplitude Detector

In this section, we shall briefly discuss the optimum detector
for detecting the binary signals whose amplitudes and phases are
distributed differently from what were assumed in the last chapter.

In theory, the joint probability density function of the random
variables x and y defined in Eq. (5-4) and Eq. (5-5) may be de-
termined once the statistics for the amplitude and the phase are
specified. Let the joint density be p(x,y). The density of R is
obtained by averaging the conditional density Eq. (5-12) over x
and y. For simplicity, we define

106

....................
-----------------------

oA

«L v

¥

RS

w




A

-

Lo

XM

| b

| BN ]
e s

LA m

fe BRCS SEA TN S adaed diP Ay oA Sl i i Saih il AR R VA AL S A s R B A e R T S N

-xza&-y23i+2xyyi
”p(x,y) . e ¢ +x Ly, (r) +y L (r) - dx dy

Ap[Lku(r)i Lkv(r)! “"(a 6;(’ Y|'(; ny:l

where o 8; and y, are equal to ayp, 8 and Yk respectively if

o% =1, anh ny rgpresents all parame%ers which characterize the
random variables x and y. Then the density of R under hypothesis
Hk’ k=a and b, is equal to

L,(r)
p(RIHk) = :{i’: e_—r_' 'pD-ku(r)s LkV(r)’ a'I(’ Bl'(’ Yll(’ ny]
(2m)™ |K]

and the likelihood ratio test takes the following general expression

(6-31)
_ pD‘bu(r)’va(r)’ al')’ ey cy:l

POy (el (F)s ol oeey €,

A fﬂ-bu(r) ova(r)9'°‘ ’Lau(r)"‘av(r)" * '3690-59 sy ny]

H
>
<
Ha
If we implement the function f[ -], we obtain the optimum detection
system., Since f[.] is expressed as a function of afy, Lpy(r), Lay(r),
etc., evidently, the sub-processors which compute Ly, (r) and LkVYr).
k=a and b, for the system Ag(r) are again required Ey this general
optimum detection system Eq. (6-31). In other words, the basic
building blocks for the random phase and random amplitude binary
detector do not change with the assumptions on the amplitude and
phase. But how the outputs of these sub-processors should be
processed is determined by the function p(x,y) because f[ -] does
vary with p(x,y). We have demonstrated that the variables Li,(r)
and Lgy(r) are free from the interference if the detector A(r) is
designed for an optimum spacing. Even though the formula for
the detection error of the system f[-] is not known, there is a
reason to believe that for a given array size m, spectral height
hys etc. the Towest detection error will be provided by the system
designed for an optimum spacing.

threshold
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If we set ¢g=0 in Eq. (5-2), then the binary signals would
contain one random parameter which is the amplitude. From Egs. o
(5-4) and (5-5) we find that y=0 when ¢s=0. Hence the conditional -
density for R under H, becomes '

2 ’
L d
(6-32) Salie Sty

p( Rlx,Hk) = Tim ———
= (2n)™ (k|

Accordingly, the likelihood ratio test associated with the random
amplitude binary signals is equal to

xzaé
(6-33) - +x L (r) - dx
px) e 2 bu
LRT =
-xza'

Ip(x) e:—-1£1 +2 Lau(r) « dx

Hence, the sub-processors which compute Lay(r) and Lp,(r) in the
system Ag(r) are the building blocks for the random-amplitude
binary detector.

For most cases of interest, the analytic solutions for the
likelihood ratio test are not obtainable. As a result, various
types of approximations may be needed.
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CHAPTER VII
CONCLUSIONS

The goal of this research was to find the optimum detection
system for detecting corrupted binary signals received by a linear
antenna array in an effort to minimize the detection error. The
binary signals may either be completely known or have a random
amplitude, which is Rayleigh distributed, and a random phase,
uniformly distributed between -v and =, The approach used to
determine the optimum system was to perform the likelihood ratio
test based on the statistical detection theory.

The results presented here are obtained from analytic solutions.
It has been possible to obtain these solutions mainly because we have
derived an analytic expression for the inverse of the covariance
matrix K. Hence this research removes a mathematical difficulty
encountered frequently in analyzing problems related to optimum
space-time signal processing.

In the completely known signal case, the desired signals con-
sidered in Chapter II1 are the most general ones in the sense that
the waveforms may have arbitrary expressions. Hence, the equations
formulated for implementing the optimum processor and for de-
termining the system performance are valid for the ASK, FSK and
PSK binary signals.

For the case when the amplitude and phase of the desired signal
are random, the equation needed for implementing the optimum
processor was also derived. Since the phase was assumed uniformly
distributed between -m and 7, the result can not be applied to the
PSK binary signals. In general, we shall have to use a numerical
method to determine the error rate performance of the system when
the signal has a random phase and amplitude. But when the binary
signal is an on-off keyed type, a simple.analytic formula for the
detection error is available.

The optimum processors for both cases are basically cor-
relation receivers. In general, the structures for both types
of processors are dependent on the power spectrum of the inter-
fering signal,

The directional characteristics of both detection systems have
been investigated through examining how the systems respond to a
testing signal arriving from an arbitrary angle. We have found
that both processors respond unfavorably to the testing signal in
the sense that the processor outputs are suppressed if the signal
propagates into the antenna array from the angle ¢. When the
testing signal arrives from the desired angle 6, the processor
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outputs are high. The ability for each processor to favor the
signal from the angle o and to suppress the signal from the angle ¢
depends on the angular separation between & and ¢. It has been
shown that this ability can be improved by either increasing the
array size m or by adjusting the spacing d if the angles ¢ and ¢
are fixed.

The detection error is determined by the array size, the
internal noise level, the desired signal power level and the
spacing d for which the detection system is designed to be
optimum. We have concluded that the detection error is minimized
if the array elements are spaced at an optimum spacing, which 1is
solely determined by 0, ¢ and m. The reason for this is that
the processor outputs are interference-free when this particular
spacing is chosen. Another advantage for using an optimum-spaced
array is that the power-spectrum-dependent processing units can
be removed from the processor without affecting the error rate
performance. Hence, for a given array size, signal power level,
and the spectral height hy, the optimum detection system is also
invariant to the power spectrum of the interfering signal.

In a realistic situation, there are always at least some
parameters characterizing a communication signal that are not
known. In Chapter III we have idealized the situation by
assuming the binary signals to be completely known. The detector
thus obtained represents an ideal case. The error rate associated
with this case will be lower than that for signals with random
parameters. Furthermore, this ideal detector is optimum in the
sense that for a given condition (e.g., array size, spacing d,
etc.) its detection error represents a lower bound for the
performance that might be obtained with other types of array
processing (such as with adaptive array techniques [24-26]).

That is, the error rate given by Eq. (4-30) represents a lower
bound for the detection error for all conceivable binary detectors.

When the phase and amplitude are distributed otherwise, we have
formally shown that the new likelihood ratio is expressible in terms
of random variables Liy(r) and Lxy(r) and the parameters oy, 8k and
vk. For this reason, discussions given in the latter portion of this
research are believed quite general.
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APPENDIX A
A PROOF OF EQ. (2-36)

In this appendix, a simple proof of Eq. (2-36) is given. K* and
Q* are the covariance matrix and its inverse, respectively.

Ky K - Ky,

(A-1)  K*= 1Ky K -ee K,

K K2 e K
i 1

M W2 e Oy

G B - 03
(A"Z) Q* = . . »

W @ O

The general expression for the submatrix G’%’j of the product of K*
and Q* is equal to

m
(A-3) G;"j = E‘I Kgp Q;j’ 1£1, jSm

We need to prove that GIj is the null matrix if i#j and Ggi is the
identity matrix. It ha Q
diagonal, i.e.,

been pointed out that both K’;'j an ?j are

m
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The product of KS . and QF

1J
:g K:J and Q 1322’

is also d1agona1 In terms of the elements

1‘]the element of G j at 22 position is equal

(A-6) G500= L KE(1-1INe2T(p-1)N2] S (p-1)Me2 0 (51 M2

From Eqs. (2-28) and (2-33), we have

(A-7) kf(1 1IN (p=1)N#2] ~ - (]'3 )hw

Substituting Eqs. (A-7) and (2-36) into Eq. (A-6), yields

m

8y A, =h
(A-8 (A -(1-s; )h) . -%l e )
) 900 ,Z,=1 n "85ty <w h, [mA =(m=1)h ]

For i#j, we have
-m-2) (=) 2, (a,h )
thnAQ-(m-l)hw] hw[mxn-(m-l)hw]

93500 =

, Oy h )0 m2) (3 yoh,)]
hw[mxl-(m-l)hw]

Hence, ng, i#j, is equal to the null matrix. If i=j, we have
2

=(m-1)(x,=h) ML AgHm-2)0-h )]

hw[mxg-(m-l)hw] hw[mxl-(m-l)hw]

= ] .

*
95iez

Hence, G¥, equals the identity matrix. We complete the proof that
Eq. (2-33 is correct.
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' APPENDIX B

THE STATISTICS OF L(R), L, (r) and L, (r)

i

In this appendix, we derive the variances and formulate some
useful relations concerning L(R), Lky(r) and Lky(r) defined in _
Chapter III and Chapter V. The expressions for them are very similar, 5

In order to avoid repetitions, we define two new functions Lf and Lg:
(B-1) B
L T f.(t.) T 3
m -(t. m
Fla X[ v | 7T e 13 [ vty .
Lg 1-] "'T gi(ti) 1’3-] -T V]
f.(z.) R
3737 y(t,z) - dt dz
95(25)

where f(t) and g(t) are not random processes,

N SRV R
S X —
LW
(B-2)
ni(t) + wi(t) +e ai(t), under Ha
Yi(t) =

ni(t) + wi(t) +e bi(t), under H

R
Aa 4

The signals a(t) and b(t) may contain random parameter r. Because
the equations to be derived will not be directly expressed in

terms of a(t) and b(t), we place ¢, ¢=0 or 1, in Eq. (B-2) )
to see the effects when a(tg or b(t) equals zero. -

PR N

For a given r, the means of Lf and L_ under Hb are

9
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{L,|T T f.(t,)
Hhel® % J by (ts): it) dt -
Ly} =1l 9;(t;)

T U f.(2.)
- ZmZ JJ b.(t.)- J(ZJ) ~¥(t,z) . dt dz
351 - T gs(zg)

The product of two conditional means is equal to
(B-4)

2 M T

o igjzl JJ-T bi(ti)bs(z5) « £(ty) » g5(z4) dt dz

- ¢ YZ? JJJ T b, (x,)bs(t)of (x )g:(z;)e¥(t,z).dx dt dz
- 2,1,3=1 -T‘?'Q'i‘i nggjj sZ )+ dX

- ¢ ? JJJT b (x,)b;(ts)eg (x )f.(z;)-v(t,z)-dx dt dz
62,1,§=1 _TZSLiigzgjj s
2 m T

te .Rgngg,jﬂ “”-T bl(xz)bi(ti) ) fn(gn) . gj(zj) .

¥(x,y) ¢ ¥(t,2) - dx dy dt dz

The product of Lf and L_ is given by

g
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B-5

: (B-5) . .

i Lng = i§§=] JJ-T Y'i(t'i) YJ(ZJ) . f‘i(t'i) gJ(zJ) » dtdz

%; m T Eg

% ) 1?% n=1m-TYz("z)Yi (t4)-F,(x,)g5(z5) - ¥(ts2) dx- dt dz &

) g :

3 " J1]rateate-eytega, ) sttaad-ant o i

- m T =
1 JJ]]_TYi(ti)y2<xg)-fj<zj)gn(yn> c¥(t,2) -

2,M,1,5=1

ey "
PR A PRV SO

o ¥(x,y) » dx dy dt dz

ior a given r, the mean of Yi(ti)Yz(xz) under hypothesis H_ is given
Yy

RO ™ Sike

(B'G) E{Yi(ti) Yz(xz)lrg Hb}

= R(t-X) + hw ¢« 8.

4 " 8(tx) + &2 L b)) b (x)

Hence, the conditional mean of LfL

(8-7)

g under hypothesis I-lb is given by

Rk B D i
BA% i plasiaavivioe

3{ E{Lf Lglr oy}

5 m T

:: = 1§§=1 JJ-T R(t-2z) - £, (t;) gj(zj) . dt dz Z
5% m T .
g "y 1RGO REACR AL NCRLACRNE 3
4

B . ¥(t,2) « dx dt dz
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L

(8-7)  +nl ,Z§Z1 JJJJTT R(t-x) = f5(z;) 9,(y,) -

(Cont) jon=
}L 1
i' « ¥(t,z) » ¥(x,y) « dt dz - dx dy Zﬁ
T; m (T -
3 +hy ] J_T £4(t;) g(t,) - dt

m T
"M i§§=l JIT Efi(ti)gj(zj) + gi(ti)fj(zj)]~v(t,z).dt dz

m T ;
Py ZZ: JJJ fj(zj)'gn(yn)'w(t-z)'w(t,y)-dt dz dy -

T’ Jsn=1 T " 4

T

2 T JJ -

+ (t.)b.(z.) » f.(t.) g.(z.) - o

: e ZZ] . b1(t1)bJ(zJ) f1(t1) 93(23) dt dz .
N 1,3 "
¥ -
2 m T »-1

- M mT by (£;0b, (x,)EF, (x,)a, (2 )+, (x,)F (243 :
. ¥(t,z) - dx dt dz ;;
(I X R RRATRIRCS :
-€ b. t. X cf y g. 2. . ?.,
2,n,§,j=1 -T LR LA L Y ;_‘
< ¥(x,y) - ¥(t,z) - dx dy dt dz Eﬁ
e The expression given above may be simplified by applying the 3
& following relations: ik
5 T :
g (B-8) I_T 6, (t) ¢, (t) = dt = 5, B
o
E and 3
:
g 5

b .
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m

(B-9)  Rtz) = ] (yoh,) -, (t)e,(2) g

The second term of Eq. (B-7) is equal to
(B-10)

-2m - j’§Z] R(t-x)fz(xz)gj(zj) o ¥(t,z) - dx dt dz

m T o Az-hw
= -2m i’JZZ] ”_T fi(ti)gj(zj)-zgl —h ¢o(t)e, (2)-dt dz
"t A " Iiw
The third term of Eq. (B-8) equals
(8-11)
n’ ifg_] j JTT 94(t;)f5(z4) - z;f] <A“ 'Hw" 4,(t)e,(2)-dt dz
S m ‘T"r)z

L~ w
The fifth term of Eq. (B-8) equals

m T
G12) 2,1 ”_T £1(8) 95(zy) + ¥(t,2) - dt &z

The sixth term of Eq. (B-8) is equal to

m T © ¢ (t)e,(z)
(B13)  m - b, i§§=1 ”-r 3 ()5 (zy)- zZl ﬁ—' 2 4t &
(' Ay - “;>

Substituting Eqs. (B-10), (B-11), (B-12), and (B-13) into Eq. (B-7)
and simplifying the resultant expression, yields
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(B-14)
E{Lnglr. Hy}

m T m T
LR PR IR RAATE B I fiteeytay) -

]

. ¥(t,z) - dt dZI

2 %o
R JJ-T by(ty)bylzg) » £(t;) g5(z;) - dt dz

19i’j=]

2 m T
R A | ORI R R C AR THER AR LACHR R

. ¥(t,z) . dx dt dz

T
2 m
v omn ]I b byteg) + ) gy02p) -
,n,1,5=1 -7 ) A Rt A ] n*n’ J3'%§
o ¥(x,y) - ¥(t,z) - dx dy dt dz
The sum of the last three terms in Eq. (B-14) are equal to Eq. (B-4).

Case 1

We next determine the variance of L(R). L¢ and Lq are equal to
L(R) if £(t) = g(t) = s(t). Since the signal bft) doeg not contain
random parameters, the conditional mean is just the mean. Hence the
variance of L(R) under Hy, is

(B-15)
var{L(R) [H 3= E (L2(R) |H,} - EZ(L(R) [Hy)

= {EQ. (B=14)}e(p)og(t)=s(t) = (E9 (B=8)}e(t)aq(t)=s(t)

m T 2 m T
hw 1;} I-Tsi(ti)dt - i§§=] II_T Si(ti)sj(zj).y(t’z).dt dz
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The variance of L(R) under Hz may be derived in the same manner. o
We have found that the variance under Ha has the same expression.

Case 2 51

When b(t) = x up(t) - y vb(t), where x, y, ub(t) and vb(t) are
defined in Chapter V, then

(B-16)

Eb(ty) by(z;)} = oflup;(t,) upy(z) + vy () vys(z9)]
and

E{b,(t;)} = 0

From Eq. (B-3), we obtain
ELg|Hp} = ECECLc|T, H )Y = 0

Similarly,

E{Lglﬂb} 0

For the sake of simplicity, we define that
"HZ‘ ! (t,)f (L) Zm ! (t)f.(
<u,f> & I u,(t.)f.(t;)dt - JJ u(t )f.(z.)v(t,z)-dt dz
b4 §=1 J-T A Rt R B | .i,g’;'l -T itti JJ
fn T (t.)9. () m T
<V,g> A J v,(t.)g.(t,;)dt- ]J v.(t:)g.(z.)v(t,z) dt dz,
R IPK L Aiae i 1§§=1 S IR D

etc. From Eq. (B-14) and Eq. (B-16), we obtain
(B-17)
E{L¢ Lglﬂb} = E{E{Lf Lglr. Hy}}
= .<fg>+22<u f> o <u,,9>
hw ] GOI. b? b'g

+ e2°§ <vb.f> * <Vpse9>
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DO SO

E{Lf'LgIHa} is readily obtained when the subscript b in Eq. (B-17) is
changeu to a. The parameters s By and Tys defined in Chapter V may
be written as

2

[+

N =
o = E—-(uk, Uy s k=aand b

(D

< W
-: O%
! B = R, Yk Vi
o2 o?
g} (S Wi S S W U

We next formulate the variances. Ls and Lg are equal to Lky(vy),
k =aand b, if f(t) = g(t) = h;] u (t). Hence,

(8-18)
var{L, (v)H ) = EQL (v)IH} - EZLL (V) [H )

—

— —~—e
AN PN

1 2

= k; <Upsuy> + ezafoh;2<uk-uk>2 +620$h;2<uk’vk>

= Lol B D)
r

. - =-_~|
Le(r) and Lg(y) are equal to Ly, (v) 3f £(t) = g(t) = -H v (t).

=1 2,2 2
(8-19)  var{l, (v)|H 1 = ;Z{Bk +e (B +v )}
To examine if Lku(y) and Lkvfy) are uncorrelated, we compute
(8-20)

Te o w T 7

E{L, (ML () M} - EQL (v [H Y EQL (Y) R

———
o« a0
O

il lz-{vk + ezvk(ak + ek)}
(o}
r

Hence, in general, Li,(y) and Lyy(y) under Hy are correlated. If an
optimum-spaced array ?s used in xhe detection system, we have shown

5 |
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in Chapter V that vy =,0. When the interference is a white noise
process, we know that yx % 0. From Eq. (B-20), we conclude that
Lky(Y) and Lyy(y) are uncorrelated for those two special cases.
Other relations can also be obtained from the general formula
Eq. (B-17). For example,

(8~21)
E{L,, ()L, (¥) By}

I‘ l'. I

-l

v
-1 8202 ezc%

= hw <ub.ua> + —Z—hw <ub.Ub><ub,Ua> + _hz__ <vb,ub><va,ua> :
W

= ]W(<(ua,ub> + ezab . <ua,ub~> + ezyb<ua,va> 1\

Hence, La,(v) and Ly, (v) are also correlated. In Section V.B, we -
need to know the variances of L uly) and Lay(y) when e= 0. Letting
€=0 in Eq. (B-18) and Eq. (B-19)%

we obtain the variances:

s
(8-22) var{Lau(v)IHk} - X
[0}
T
and
By
(B-23) var{Lav(y)IHk} = ;2
r

We can show from Eq. (B-17) that Ly,(v) and Lqy(y), where k, p=a
and b, are uncorrelated if an optimum-spaced array is used in the
detection system. The same results do not exist between La,(y) and

nggy) or between Lav(y) and va(y) if an optimum-spaced array is
used.
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